==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN 26-MAY-99 1QPM . COMPND 2 MOLECULE: PROTEIN (MU BACTERIOPHAGE C REPRESSOR PROTEIN); . SOURCE 2 ORGANISM_SCIENTIFIC: ENTEROBACTERIA PHAGE MU; . AUTHOR U.ILANGOVAN,J.M.WOJCIAK,K.M.CONNOLLY,R.T.CLUBB . 69 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5347.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 44 63.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 10.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 8.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 13.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 30.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 13 A K 0 0 229 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -31.6 8.1 1.3 -9.6 2 14 A S - 0 0 81 2,-0.0 2,-0.4 47,-0.0 47,-0.0 -0.433 360.0-148.2 -79.6 159.8 6.0 -1.5 -8.1 3 15 A I + 0 0 78 -2,-0.1 48,-0.4 2,-0.0 2,-0.4 -0.990 19.6 170.4-132.6 130.0 4.2 -1.0 -4.8 4 16 A W - 0 0 84 -2,-0.4 2,-0.4 45,-0.2 45,-0.2 -0.994 6.0-176.4-140.0 130.8 3.4 -3.8 -2.2 5 17 A C B -A 48 0A 40 43,-2.2 43,-1.8 -2,-0.4 -2,-0.0 -0.978 25.7-119.1-130.0 141.6 2.1 -3.3 1.4 6 18 A S >> - 0 0 38 -2,-0.4 4,-1.4 41,-0.2 3,-0.8 -0.365 32.5-108.1 -74.0 158.0 1.4 -5.8 4.1 7 19 A P H 3> S+ 0 0 15 0, 0.0 4,-3.6 0, 0.0 5,-0.4 0.765 113.9 70.5 -57.5 -26.9 -2.2 -6.3 5.5 8 20 A Q H 3> S+ 0 0 126 1,-0.2 4,-0.9 2,-0.2 5,-0.1 0.951 103.0 41.9 -60.0 -44.4 -1.1 -4.6 8.8 9 21 A E H <4 S+ 0 0 102 -3,-0.8 -1,-0.2 2,-0.2 4,-0.1 0.907 119.2 46.0 -68.3 -40.1 -0.9 -1.2 7.0 10 22 A I H >< S+ 0 0 10 -4,-1.4 3,-2.6 1,-0.2 6,-0.3 0.975 112.2 47.1 -68.9 -54.7 -4.1 -2.0 5.0 11 23 A M H 3< S+ 0 0 70 -4,-3.6 -1,-0.2 1,-0.3 -2,-0.2 0.731 103.0 66.1 -63.1 -14.3 -6.3 -3.2 8.0 12 24 A A T 3< S+ 0 0 53 -4,-0.9 2,-0.4 -5,-0.4 -1,-0.3 0.594 82.8 99.9 -80.4 -6.2 -5.0 -0.2 9.9 13 25 A A S X S- 0 0 7 -3,-2.6 3,-1.2 3,-0.3 48,-0.1 -0.627 74.3-142.4 -80.2 131.2 -7.0 1.8 7.3 14 26 A D T 3 S+ 0 0 142 -2,-0.4 -1,-0.2 1,-0.3 46,-0.0 0.920 103.5 61.7 -60.0 -40.0 -10.4 3.0 8.6 15 27 A G T 3 S+ 0 0 36 1,-0.3 -1,-0.3 45,-0.1 -4,-0.1 0.792 108.9 45.8 -57.2 -24.2 -11.8 2.3 5.1 16 28 A M S < S+ 0 0 16 -3,-1.2 -1,-0.3 -6,-0.3 -3,-0.3 -0.704 82.5 173.9-121.8 80.1 -10.8 -1.3 5.7 17 29 A P + 0 0 64 0, 0.0 2,-0.1 0, 0.0 -5,-0.1 -0.273 34.9 63.2 -80.8 168.8 -12.0 -2.2 9.3 18 30 A G S S- 0 0 51 -7,-0.1 5,-0.1 4,-0.1 -2,-0.0 -0.233 92.1 -61.0 100.2 165.5 -11.8 -5.7 10.9 19 31 A S S > S- 0 0 84 -2,-0.1 4,-1.6 1,-0.1 5,-0.2 0.073 72.7 -74.6 -70.0-168.3 -8.7 -7.8 11.7 20 32 A V H > S+ 0 0 49 1,-0.2 4,-1.5 2,-0.2 3,-0.4 0.952 137.3 48.6 -58.3 -46.6 -6.4 -8.9 8.9 21 33 A A H > S+ 0 0 64 1,-0.2 4,-2.1 2,-0.2 -1,-0.2 0.919 102.0 63.3 -61.2 -39.8 -8.8 -11.6 7.7 22 34 A G H > S+ 0 0 25 1,-0.3 4,-1.4 2,-0.2 -1,-0.2 0.933 102.4 50.8 -52.0 -40.2 -11.7 -9.0 7.7 23 35 A V H X S+ 0 0 1 -4,-1.6 4,-2.2 -3,-0.4 -1,-0.3 0.924 105.1 56.3 -63.3 -40.1 -9.7 -7.2 5.0 24 36 A H H < S+ 0 0 66 -4,-1.5 4,-0.4 1,-0.2 -1,-0.2 0.872 99.0 62.4 -60.0 -33.9 -9.4 -10.5 3.1 25 37 A Y H >X S+ 0 0 173 -4,-2.1 3,-1.3 1,-0.2 4,-0.6 0.958 106.6 42.2 -59.5 -47.5 -13.3 -10.6 3.2 26 38 A R H >X S+ 0 0 132 -4,-1.4 3,-1.0 1,-0.3 4,-0.8 0.927 113.1 53.9 -65.0 -40.4 -13.5 -7.4 1.1 27 39 A A H 3<>S+ 0 0 6 -4,-2.2 5,-0.6 1,-0.2 -1,-0.3 0.491 90.6 80.4 -72.8 1.6 -10.7 -8.6 -1.1 28 40 A N H <45S+ 0 0 96 -3,-1.3 -1,-0.2 -4,-0.4 -2,-0.2 0.889 92.8 46.2 -74.9 -37.7 -12.7 -11.8 -1.7 29 41 A V H <<5S+ 0 0 111 -3,-1.0 -2,-0.2 -4,-0.6 -1,-0.1 0.983 111.1 50.5 -69.9 -58.1 -14.9 -10.2 -4.3 30 42 A Q T <5S- 0 0 112 -4,-0.8 2,-1.6 1,-0.1 23,-0.0 -0.411 92.4-112.1 -80.1 159.7 -12.3 -8.4 -6.4 31 43 A G T 5 - 0 0 80 -2,-0.1 -3,-0.1 2,-0.0 -1,-0.1 -0.496 43.8-171.9 -89.5 69.4 -9.2 -10.2 -7.8 32 44 A W < - 0 0 33 -2,-1.6 2,-0.5 -5,-0.6 18,-0.1 -0.277 31.9-106.1 -59.7 146.8 -6.7 -8.3 -5.6 33 45 A T + 0 0 55 16,-0.3 16,-1.0 2,-0.0 2,-0.3 -0.631 50.3 175.3 -76.9 121.2 -3.0 -9.0 -6.5 34 46 A K E -B 48 0A 127 -2,-0.5 2,-0.4 14,-0.2 14,-0.2 -0.947 15.7-169.3-128.5 150.3 -1.7 -11.3 -3.7 35 47 A R E -B 47 0A 110 12,-1.1 12,-1.1 -2,-0.3 2,-1.1 -0.989 19.0-139.7-141.9 131.6 1.7 -13.0 -3.2 36 48 A K E -B 46 0A 150 -2,-0.4 10,-0.2 10,-0.2 2,-0.1 -0.740 25.9-164.7 -91.1 98.8 2.7 -15.7 -0.7 37 49 A K E -B 45 0A 92 8,-2.2 8,-1.3 -2,-1.1 2,-0.7 -0.481 35.2-106.8 -81.2 154.5 6.3 -14.7 0.4 38 50 A E S S- 0 0 196 1,-0.2 4,-0.2 6,-0.2 -1,-0.1 0.177 73.0 -84.5 -68.3 27.0 8.4 -17.3 2.3 39 51 A G - 0 0 11 -2,-0.7 2,-1.0 6,-0.3 -1,-0.2 0.523 38.3-110.6 78.7 130.2 7.8 -15.3 5.5 40 52 A V S S- 0 0 96 1,-0.2 3,-0.2 -3,-0.1 -1,-0.1 -0.786 87.9 -40.8 -97.1 100.2 10.0 -12.3 6.3 41 53 A K S S+ 0 0 209 -2,-1.0 -1,-0.2 1,-0.2 2,-0.1 0.867 143.8 51.3 50.9 32.2 12.0 -13.4 9.4 42 54 A G S S- 0 0 68 -4,-0.2 2,-0.3 3,-0.0 -1,-0.2 -0.291 101.3 -75.2-155.7-115.1 8.7 -15.0 10.5 43 55 A G S S+ 0 0 59 -3,-0.2 -4,-0.2 1,-0.2 -3,-0.1 -0.848 90.6 6.2-168.8 130.2 6.3 -17.3 8.8 44 56 A K - 0 0 142 -2,-0.3 2,-0.5 1,-0.1 -1,-0.2 0.986 68.1-167.7 59.8 80.9 3.7 -17.0 6.0 45 57 A A E - B 0 37A 19 -8,-1.3 -8,-2.2 -3,-0.1 2,-0.4 -0.853 2.4-168.1-102.6 132.5 4.1 -13.3 4.8 46 58 A V E - B 0 36A 35 -2,-0.5 2,-0.3 -10,-0.2 -10,-0.2 -0.957 5.5-178.2-122.7 138.7 1.3 -11.9 2.6 47 59 A E E - B 0 35A 50 -12,-1.1 -12,-1.1 -2,-0.4 2,-0.3 -0.929 10.9-152.8-133.0 158.2 1.4 -8.6 0.5 48 60 A Y E -AB 5 34A 0 -43,-1.8 -43,-2.2 -2,-0.3 2,-0.8 -0.953 20.5-122.9-129.4 149.7 -1.1 -6.7 -1.8 49 61 A D > - 0 0 22 -16,-1.0 3,-1.2 -2,-0.3 4,-0.5 -0.802 16.7-168.3 -95.0 112.0 -0.4 -4.3 -4.7 50 62 A V G > S+ 0 0 13 -2,-0.8 3,-0.7 -47,-0.3 -1,-0.2 0.776 84.6 67.8 -68.4 -24.5 -2.2 -0.9 -4.0 51 63 A M G 3 S+ 0 0 120 -48,-0.4 -1,-0.2 1,-0.2 -47,-0.1 0.709 100.7 48.7 -70.3 -15.5 -1.5 0.1 -7.6 52 64 A S G < S+ 0 0 60 -3,-1.2 -1,-0.2 -19,-0.1 -2,-0.2 0.558 90.4 97.5 -99.7 -8.5 -4.0 -2.6 -8.8 53 65 A M S < S- 0 0 6 -3,-0.7 5,-0.2 -4,-0.5 -21,-0.0 -0.548 92.9 -83.9 -78.6 146.6 -6.8 -1.6 -6.3 54 66 A P > - 0 0 69 0, 0.0 4,-1.9 0, 0.0 3,-0.1 0.048 41.1-110.3 -41.6 155.1 -9.6 0.7 -7.7 55 67 A T H > S+ 0 0 86 1,-0.2 4,-2.0 2,-0.2 -2,-0.1 0.915 119.9 59.0 -60.0 -39.9 -8.7 4.4 -7.6 56 68 A K H > S+ 0 0 171 1,-0.2 4,-1.2 2,-0.2 -1,-0.2 0.935 105.9 48.1 -56.3 -42.8 -11.3 4.9 -4.8 57 69 A E H > S+ 0 0 19 1,-0.2 4,-1.6 2,-0.2 -1,-0.2 0.906 105.9 59.2 -64.2 -38.7 -9.4 2.4 -2.7 58 70 A R H X S+ 0 0 96 -4,-1.9 4,-2.4 1,-0.2 5,-0.3 0.897 98.8 57.5 -58.8 -39.3 -6.2 4.3 -3.5 59 71 A E H X S+ 0 0 127 -4,-2.0 4,-2.9 1,-0.2 -1,-0.2 0.922 103.3 54.3 -59.9 -40.1 -7.6 7.5 -2.0 60 72 A Q H X S+ 0 0 86 -4,-1.2 4,-1.9 -3,-0.2 -1,-0.2 0.911 109.3 46.9 -62.1 -40.0 -8.1 5.6 1.3 61 73 A V H X S+ 0 0 32 -4,-1.6 4,-1.7 2,-0.2 5,-0.2 0.971 115.7 44.0 -67.7 -49.9 -4.4 4.5 1.4 62 74 A I H X S+ 0 0 98 -4,-2.4 4,-2.6 1,-0.2 -2,-0.2 0.909 109.8 58.0 -60.7 -40.0 -3.1 8.0 0.6 63 75 A A H X S+ 0 0 53 -4,-2.9 4,-0.7 -5,-0.3 -1,-0.2 0.936 103.2 52.3 -58.5 -43.2 -5.6 9.5 3.1 64 76 A H H >< S+ 0 0 75 -4,-1.9 3,-1.0 1,-0.2 -1,-0.2 0.932 112.1 45.7 -60.1 -41.1 -4.1 7.4 5.9 65 77 A L H >X S+ 0 0 81 -4,-1.7 4,-4.6 1,-0.3 3,-2.4 0.860 101.9 66.2 -70.0 -31.4 -0.7 8.7 5.0 66 78 A G H 3< S+ 0 0 59 -4,-2.6 -1,-0.3 3,-0.3 -2,-0.2 0.710 89.8 67.4 -62.9 -14.7 -2.1 12.2 4.7 67 79 A L T << S+ 0 0 135 -3,-1.0 -1,-0.3 -4,-0.7 -2,-0.2 0.519 127.8 1.9 -83.1 -2.2 -2.7 11.9 8.5 68 80 A S T <4 0 0 105 -3,-2.4 -2,-0.2 -4,-0.1 -3,-0.1 0.434 360.0 360.0-150.5 -34.7 1.1 11.9 9.0 69 81 A T < 0 0 141 -4,-4.6 -3,-0.3 -5,-0.2 -4,-0.1 0.397 360.0 360.0-153.5 360.0 2.9 12.4 5.7