==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RIBOSOME 17-OCT-03 1R73 . COMPND 2 MOLECULE: 50S RIBOSOMAL PROTEIN L29; . SOURCE 2 ORGANISM_SCIENTIFIC: THERMOTOGA MARITIMA; . AUTHOR W.PETI,T.ETEZADY-ESFARJANI,T.HERRMANN,H.E.KLOCK,S.A.LESLEY, . 66 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5689.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 56 84.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 12.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 44 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 210 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-104.0 11.0 6.6 -1.5 2 2 A K + 0 0 184 1,-0.1 4,-0.0 3,-0.0 50,-0.0 -0.260 360.0 158.4 -63.5 153.0 12.0 6.5 2.2 3 3 A A + 0 0 17 2,-0.1 2,-2.1 53,-0.0 3,-0.2 0.475 12.5 160.4-121.9 -73.9 10.3 4.3 4.7 4 4 A S S >> S+ 0 0 83 1,-0.2 3,-1.7 2,-0.0 4,-1.3 -0.642 90.1 46.0 49.5 -70.6 12.1 3.4 7.9 5 5 A E H >> S+ 0 0 113 -2,-2.1 4,-1.3 1,-0.3 3,-1.1 0.890 110.2 50.7 -57.9 -51.1 8.6 2.5 9.3 6 6 A L H 34 S+ 0 0 14 1,-0.3 -1,-0.3 2,-0.2 12,-0.1 0.561 120.8 35.4 -70.4 -13.7 7.4 0.5 6.3 7 7 A R H <4 S+ 0 0 143 -3,-1.7 -1,-0.3 53,-0.0 -2,-0.2 0.437 107.9 70.5-102.2 -12.2 10.6 -1.6 6.2 8 8 A N H << S+ 0 0 113 -4,-1.3 -2,-0.2 -3,-1.1 -3,-0.2 0.693 76.3 92.6 -84.5 -23.8 10.9 -1.6 10.1 9 9 A Y S < S- 0 0 80 -4,-1.3 2,-0.1 -5,-0.2 -5,-0.0 -0.133 89.7 -96.6 -58.4 162.6 7.9 -3.9 10.8 10 10 A T >> - 0 0 80 1,-0.1 4,-3.4 4,-0.0 3,-0.6 -0.482 40.0 -98.0 -80.6 163.7 8.6 -7.6 11.1 11 11 A D H 3> S+ 0 0 119 1,-0.3 4,-1.5 2,-0.2 5,-0.1 0.771 127.2 48.5 -57.1 -26.9 8.1 -9.9 7.9 12 12 A E H 3> S+ 0 0 125 2,-0.2 4,-1.3 3,-0.1 -1,-0.3 0.808 116.7 40.5 -79.6 -39.4 4.7 -10.9 9.3 13 13 A E H <> S+ 0 0 85 -3,-0.6 4,-1.2 2,-0.2 5,-0.3 0.917 111.8 57.8 -69.9 -46.6 3.6 -7.3 10.1 14 14 A L H >X S+ 0 0 5 -4,-3.4 4,-3.0 1,-0.2 3,-1.1 0.940 110.1 42.5 -53.9 -57.9 5.1 -6.0 6.8 15 15 A K H 3X S+ 0 0 102 -4,-1.5 4,-3.1 1,-0.2 5,-0.3 0.942 112.6 54.4 -51.6 -50.6 3.0 -8.4 4.6 16 16 A N H 3< S+ 0 0 90 -4,-1.3 -1,-0.2 1,-0.2 -2,-0.2 0.617 118.0 35.3 -67.4 -11.8 -0.1 -7.7 6.7 17 17 A L H S+ 0 0 95 -5,-0.3 4,-3.3 2,-0.2 -2,-0.2 0.920 108.6 42.9 -64.5 -48.5 -3.6 -3.9 3.2 21 21 A K H X S+ 0 0 51 -4,-1.9 4,-2.2 2,-0.2 5,-0.3 0.976 114.1 51.4 -55.9 -62.1 -2.6 -0.9 1.0 22 22 A K H X S+ 0 0 104 -4,-2.2 4,-1.1 1,-0.2 -2,-0.2 0.892 117.8 38.5 -47.6 -50.2 -2.4 -3.1 -2.1 23 23 A R H >X S+ 0 0 112 -4,-3.2 4,-2.0 1,-0.2 3,-0.7 0.976 110.5 61.2 -60.1 -55.8 -5.9 -4.5 -1.5 24 24 A Q H 3X S+ 0 0 69 -4,-3.3 4,-3.1 1,-0.3 5,-0.3 0.794 102.6 49.8 -45.4 -49.5 -7.4 -1.2 -0.2 25 25 A L H 3X S+ 0 0 26 -4,-2.2 4,-2.4 1,-0.2 -1,-0.3 0.945 115.4 43.1 -56.1 -50.6 -6.8 0.6 -3.5 26 26 A M H X S+ 0 0 15 -4,-3.1 4,-2.0 -5,-0.3 3,-0.9 0.962 109.5 48.0 -65.0 -49.3 -11.9 1.3 -2.7 29 29 A R H 3X S+ 0 0 171 -4,-2.4 4,-2.5 -5,-0.3 -1,-0.2 0.901 111.7 52.9 -57.0 -36.7 -12.2 1.5 -6.6 30 30 A F H 3X S+ 0 0 120 -4,-1.1 4,-0.6 1,-0.2 -1,-0.3 0.761 106.2 52.8 -65.9 -26.7 -14.6 -1.5 -6.2 31 31 A Q H S+ 0 0 71 -4,-1.3 5,-2.8 -3,-0.9 4,-2.8 0.875 112.9 43.1 -81.1 -36.0 -16.6 0.5 -3.6 32 32 A L H <5S+ 0 0 79 -4,-2.0 -2,-0.2 3,-0.3 -3,-0.1 0.949 107.9 58.4 -66.6 -53.4 -17.1 3.5 -5.9 33 33 A A H <5S+ 0 0 85 -4,-2.5 -1,-0.2 -5,-0.2 -2,-0.2 0.666 117.9 35.5 -55.4 -23.4 -17.8 1.2 -8.9 34 34 A M H <5S- 0 0 135 -4,-0.6 -2,-0.2 -5,-0.1 -1,-0.2 0.852 123.3-101.8 -82.5 -74.6 -20.7 -0.0 -6.8 35 35 A G T <5S+ 0 0 65 -4,-2.8 -3,-0.3 -5,-0.1 -2,-0.1 0.384 92.3 95.1 151.3 50.0 -21.6 3.2 -5.0 36 36 A Q < + 0 0 117 -5,-2.8 -4,-0.2 -8,-0.2 -5,-0.1 0.690 69.3 67.1-120.7 -60.1 -20.2 3.2 -1.5 37 37 A L + 0 0 22 -9,-0.3 -1,-0.1 1,-0.1 3,-0.1 -0.398 51.2 163.1 -62.8 144.6 -16.9 5.0 -1.6 38 38 A K + 0 0 191 1,-0.1 2,-0.9 -3,-0.1 -1,-0.1 0.520 46.9 86.0-141.5 -24.6 -17.3 8.8 -2.4 39 39 A N > + 0 0 92 1,-0.2 4,-1.2 2,-0.1 -1,-0.1 -0.749 47.4 177.5 -86.7 101.6 -14.1 10.7 -1.5 40 40 A T H > S+ 0 0 92 -2,-0.9 4,-2.1 2,-0.2 -1,-0.2 0.752 75.8 64.1 -81.9 -21.5 -11.9 10.3 -4.7 41 41 A S H > S+ 0 0 75 2,-0.2 4,-2.4 1,-0.2 5,-0.3 0.912 100.5 55.2 -60.4 -38.9 -9.0 12.4 -3.3 42 42 A L H > S+ 0 0 87 1,-0.2 4,-2.9 2,-0.2 -2,-0.2 0.955 107.7 47.5 -62.1 -49.7 -8.6 9.7 -0.7 43 43 A I H X S+ 0 0 31 -4,-1.2 4,-3.0 1,-0.2 -1,-0.2 0.920 111.6 51.7 -51.0 -47.3 -8.3 7.1 -3.5 44 44 A K H X S+ 0 0 119 -4,-2.1 4,-0.8 1,-0.2 -2,-0.2 0.844 114.4 41.4 -66.9 -37.9 -5.7 9.3 -5.3 45 45 A L H X S+ 0 0 89 -4,-2.4 4,-1.7 -3,-0.2 3,-0.5 0.862 110.9 58.3 -65.5 -43.7 -3.6 9.7 -2.1 46 46 A T H X S+ 0 0 5 -4,-2.9 4,-3.5 -5,-0.3 -2,-0.2 0.949 103.1 53.8 -61.9 -42.4 -4.2 6.0 -1.4 47 47 A K H X S+ 0 0 114 -4,-3.0 4,-2.8 2,-0.2 -1,-0.3 0.813 103.9 54.7 -54.6 -42.6 -2.6 5.2 -4.9 48 48 A R H X S+ 0 0 162 -4,-0.8 4,-2.5 -3,-0.5 -1,-0.2 0.951 117.4 35.9 -59.7 -45.9 0.6 7.2 -4.1 49 49 A D H X S+ 0 0 53 -4,-1.7 4,-3.4 2,-0.2 5,-0.3 0.855 113.3 57.4 -82.5 -33.8 1.2 5.2 -1.0 50 50 A I H X S+ 0 0 17 -4,-3.5 4,-3.4 -5,-0.2 5,-0.4 0.957 110.6 46.8 -53.0 -50.1 -0.1 2.0 -2.5 51 51 A A H X S+ 0 0 45 -4,-2.8 4,-2.2 2,-0.2 -2,-0.2 0.953 116.2 43.0 -62.3 -50.0 2.5 2.5 -5.0 52 52 A R H X S+ 0 0 66 -4,-2.5 4,-2.4 2,-0.2 -2,-0.2 0.951 120.5 41.9 -55.7 -57.6 5.2 3.3 -2.4 53 53 A I H X S+ 0 0 4 -4,-3.4 4,-2.2 2,-0.2 -2,-0.2 0.932 115.9 46.3 -54.0 -55.9 4.1 0.4 -0.0 54 54 A K H X S+ 0 0 106 -4,-3.4 4,-2.1 -5,-0.3 -1,-0.2 0.851 113.3 52.4 -67.4 -27.6 3.5 -2.2 -2.7 55 55 A T H X S+ 0 0 60 -4,-2.2 4,-3.2 -5,-0.4 5,-0.3 0.915 103.8 56.7 -62.8 -47.8 6.9 -1.1 -4.1 56 56 A I H X S+ 0 0 4 -4,-2.4 4,-2.4 2,-0.2 -2,-0.2 0.936 107.6 48.2 -51.6 -49.8 8.5 -1.6 -0.6 57 57 A L H X S+ 0 0 40 -4,-2.2 4,-1.6 2,-0.2 3,-0.4 0.963 113.2 47.8 -54.2 -53.1 7.2 -5.2 -0.7 58 58 A R H >X S+ 0 0 149 -4,-2.1 4,-1.5 1,-0.2 3,-0.8 0.909 111.1 50.1 -49.8 -56.2 8.7 -5.6 -4.3 59 59 A E H 3X>S+ 0 0 65 -4,-3.2 5,-2.0 1,-0.3 4,-1.1 0.862 110.3 51.6 -53.0 -40.0 12.1 -4.1 -3.1 60 60 A R H 3<5S+ 0 0 41 -4,-2.4 -1,-0.3 -3,-0.4 -2,-0.2 0.794 104.4 58.8 -70.5 -29.3 12.1 -6.5 -0.2 61 61 A E H <<5S+ 0 0 127 -4,-1.6 -2,-0.2 -3,-0.8 -1,-0.2 0.957 110.8 37.5 -62.4 -55.5 11.5 -9.5 -2.5 62 62 A L H <5S- 0 0 98 -4,-1.5 -1,-0.2 1,-0.1 -2,-0.2 0.686 120.6 -94.4 -77.3 -23.3 14.6 -9.1 -4.7 63 63 A G T ><5S+ 0 0 50 -4,-1.1 3,-0.8 3,-0.1 -3,-0.2 0.442 91.8 118.2 118.8 3.0 17.2 -7.9 -2.1 64 64 A I T 3