==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 21-OCT-03 1R7E . COMPND 2 MOLECULE: GENOME POLYPROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR F.PENIN,V.BRASS,N.APPEL,S.RAMBOARINA,R.MONTSERRET,D.FICHEUX, . 31 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3494.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 67.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 19 61.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 163 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 162.2 -25.3 -2.1 -5.0 2 2 A G + 0 0 58 1,-0.1 0, 0.0 2,-0.0 0, 0.0 0.990 360.0 168.3 -72.5 -62.0 -22.2 -3.2 -3.0 3 3 A S + 0 0 81 1,-0.1 -1,-0.1 4,-0.0 4,-0.0 0.793 59.2 83.4 54.0 27.3 -20.8 0.2 -2.0 4 4 A W S > S+ 0 0 178 2,-0.1 4,-1.9 3,-0.1 3,-0.4 0.664 74.6 57.4-124.4 -46.1 -18.4 -1.6 0.4 5 5 A L H > S+ 0 0 97 1,-0.2 4,-2.6 2,-0.2 5,-0.2 0.897 103.0 59.1 -57.2 -38.3 -15.3 -2.8 -1.6 6 6 A R H > S+ 0 0 175 1,-0.2 4,-1.4 2,-0.2 -1,-0.2 0.923 106.0 47.7 -58.2 -41.9 -14.7 0.8 -2.7 7 7 A D H > S+ 0 0 111 -3,-0.4 4,-1.4 2,-0.2 5,-0.3 0.899 109.4 54.0 -67.1 -37.3 -14.3 1.8 1.0 8 8 A I H X S+ 0 0 55 -4,-1.9 4,-2.8 1,-0.2 3,-0.3 0.946 107.5 49.6 -63.0 -44.9 -12.0 -1.2 1.6 9 9 A W H X S+ 0 0 142 -4,-2.6 4,-2.1 1,-0.2 5,-0.5 0.848 102.8 64.7 -62.9 -30.7 -9.7 -0.0 -1.2 10 10 A D H X S+ 0 0 114 -4,-1.4 4,-0.8 -5,-0.2 -1,-0.2 0.940 117.0 24.1 -59.4 -47.4 -9.7 3.5 0.3 11 11 A W H X S+ 0 0 137 -4,-1.4 4,-2.4 -3,-0.3 5,-0.3 0.777 121.2 58.1 -90.8 -26.9 -7.9 2.3 3.5 12 12 A I H X S+ 0 0 65 -4,-2.8 4,-2.7 -5,-0.3 5,-0.2 0.973 110.9 41.1 -67.2 -51.5 -6.2 -0.8 2.0 13 13 A C H X S+ 0 0 75 -4,-2.1 4,-2.8 -5,-0.2 5,-0.2 0.903 115.5 52.8 -63.7 -38.3 -4.3 1.2 -0.7 14 14 A E H X S+ 0 0 135 -4,-0.8 4,-2.0 -5,-0.5 -2,-0.2 0.973 114.5 39.7 -62.5 -52.5 -3.5 4.0 1.9 15 15 A V H X S+ 0 0 81 -4,-2.4 4,-1.8 1,-0.2 -2,-0.2 0.909 117.4 50.7 -64.6 -39.1 -2.0 1.6 4.4 16 16 A L H X S+ 0 0 99 -4,-2.7 4,-2.2 -5,-0.3 -2,-0.2 0.912 108.0 52.7 -65.8 -40.2 -0.3 -0.4 1.6 17 17 A S H X S+ 0 0 55 -4,-2.8 4,-2.0 -5,-0.2 5,-0.2 0.930 107.2 51.8 -62.7 -43.4 1.2 2.8 0.1 18 18 A D H X S+ 0 0 119 -4,-2.0 4,-1.8 1,-0.2 -1,-0.2 0.940 111.8 46.3 -59.9 -44.4 2.7 3.8 3.5 19 19 A F H X S+ 0 0 111 -4,-1.8 4,-3.1 1,-0.2 5,-0.3 0.876 106.4 60.1 -66.8 -34.1 4.4 0.3 3.8 20 20 A K H X S+ 0 0 136 -4,-2.2 4,-3.3 1,-0.2 5,-0.3 0.940 106.2 46.5 -59.9 -44.5 5.6 0.5 0.2 21 21 A T H X S+ 0 0 99 -4,-2.0 4,-2.1 2,-0.2 -1,-0.2 0.928 113.5 49.3 -64.1 -41.9 7.6 3.7 1.0 22 22 A W H X S+ 0 0 135 -4,-1.8 4,-0.9 -5,-0.2 -2,-0.2 0.932 117.0 40.9 -63.6 -44.1 9.0 2.0 4.2 23 23 A L H >< S+ 0 0 66 -4,-3.1 3,-0.7 1,-0.2 4,-0.3 0.948 116.5 47.8 -70.9 -47.4 10.0 -1.1 2.2 24 24 A K H >< S+ 0 0 128 -4,-3.3 3,-0.9 -5,-0.3 -2,-0.2 0.852 104.6 62.6 -63.1 -31.7 11.3 0.7 -0.8 25 25 A A H 3< S+ 0 0 81 -4,-2.1 3,-0.2 -5,-0.3 -1,-0.2 0.862 115.8 30.3 -63.2 -33.2 13.3 3.1 1.5 26 26 A K T << S+ 0 0 132 -4,-0.9 -1,-0.2 -3,-0.7 -2,-0.2 0.218 109.3 72.3-109.8 15.3 15.4 0.1 2.8 27 27 A L < + 0 0 109 -3,-0.9 -1,-0.2 -4,-0.3 3,-0.1 -0.195 68.8 93.3-122.0 44.2 15.2 -2.0 -0.4 28 28 A M + 0 0 90 -3,-0.2 3,-0.2 1,-0.1 -1,-0.1 -0.503 32.7 142.0-134.4 67.7 17.6 -0.1 -2.8 29 29 A P S S+ 0 0 100 0, 0.0 2,-0.4 0, 0.0 -1,-0.1 0.913 77.9 15.4 -74.1 -45.3 21.1 -1.6 -2.4 30 30 A Q 0 0 166 -3,-0.1 0, 0.0 1,-0.1 0, 0.0 -0.972 360.0 360.0-135.3 122.9 22.1 -1.4 -6.1 31 31 A L 0 0 201 -2,-0.4 -1,-0.1 -3,-0.2 -3,-0.0 0.540 360.0 360.0-141.7 360.0 20.3 0.8 -8.8