==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 20-NOV-03 1RJU . COMPND 2 MOLECULE: METALLOTHIONEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR V.CALDERONE,B.DOLDERER,H.J.HARTMANN,H.ECHNER,C.LUCHINAT, . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2845.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 47.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 22.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 V H 0 0 114 0, 0.0 19,-2.0 0, 0.0 18,-0.4 0.000 360.0 360.0 360.0 165.2 10.5 -14.4 2.6 2 2 V E - 0 0 128 16,-0.2 2,-0.5 17,-0.2 16,-0.2 -0.330 360.0-115.1 -57.4 138.6 10.0 -11.3 4.7 3 3 V C + 0 0 9 14,-2.7 -1,-0.1 1,-0.1 21,-0.0 -0.639 47.2 157.8 -90.8 121.3 6.4 -10.2 4.4 4 4 V Q + 0 0 134 -2,-0.5 -1,-0.1 7,-0.0 21,-0.1 0.082 31.0 137.6-126.3 23.7 5.6 -6.9 2.8 5 5 V C - 0 0 12 1,-0.1 22,-0.2 5,-0.1 19,-0.1 -0.375 39.3-163.2 -60.2 149.3 2.0 -7.7 1.7 6 6 V Q + 0 0 125 20,-0.9 21,-0.2 5,-0.1 -1,-0.1 0.310 52.4 115.9-117.9 6.3 -0.7 -5.1 2.2 7 7 V C S > S- 0 0 1 19,-1.4 4,-2.3 21,-0.1 3,-0.4 -0.311 78.4-112.0 -63.8 161.6 -3.6 -7.4 1.9 8 8 V G T 4 S+ 0 0 62 1,-0.2 -1,-0.1 2,-0.2 20,-0.1 0.886 112.9 57.2 -65.5 -38.4 -5.9 -7.9 4.9 9 9 V S T 4 S+ 0 0 66 1,-0.2 -1,-0.2 4,-0.0 19,-0.0 0.843 120.0 26.0 -64.2 -33.4 -4.8 -11.5 5.4 10 10 V C T >4 S+ 0 0 1 -3,-0.4 3,-2.2 16,-0.1 -2,-0.2 0.724 86.7 107.3-104.7 -24.9 -1.1 -10.7 5.8 11 11 V K T 3< S- 0 0 120 -4,-2.3 3,-0.1 1,-0.3 -5,-0.1 -0.329 107.0 -8.1 -66.7 128.7 -0.7 -7.1 7.0 12 12 V N T 3 S+ 0 0 142 1,-0.2 2,-0.9 -2,-0.1 -1,-0.3 0.768 96.2 145.7 50.4 24.5 0.4 -7.2 10.6 13 13 V N X> - 0 0 62 -3,-2.2 3,-1.2 1,-0.2 4,-0.5 -0.827 37.7-159.5 -85.9 106.1 -0.2 -11.1 10.6 14 14 V E G >4 S+ 0 0 161 -2,-0.9 3,-0.8 1,-0.2 4,-0.3 0.813 81.0 69.3 -61.5 -24.4 2.5 -12.5 12.9 15 15 V Q G 34 S+ 0 0 162 1,-0.3 -1,-0.2 2,-0.1 3,-0.1 0.773 111.9 25.9 -66.8 -30.9 2.2 -16.0 11.4 16 16 V C G X4 S+ 0 0 10 -3,-1.2 3,-1.1 -6,-0.2 4,-0.4 0.250 85.2 108.9-117.2 9.6 3.7 -15.1 8.0 17 17 V Q T << S+ 0 0 48 -3,-0.8 -14,-2.7 -4,-0.5 3,-0.1 0.853 99.7 18.2 -58.6 -31.3 5.9 -12.1 8.8 18 18 V K T 3 S+ 0 0 186 -4,-0.3 -1,-0.3 -16,-0.2 -16,-0.2 -0.104 129.6 49.3-127.4 29.2 9.1 -14.1 8.3 19 19 V S S < S+ 0 0 80 -3,-1.1 2,-0.3 -18,-0.4 -2,-0.2 -0.005 73.0 150.6-156.5 30.8 7.8 -17.1 6.3 20 20 V C - 0 0 3 -19,-2.0 14,-0.0 -4,-0.4 -4,-0.0 -0.587 26.0-176.3 -85.2 133.5 5.7 -15.6 3.5 21 21 V S + 0 0 84 -2,-0.3 -1,-0.1 2,-0.0 3,-0.1 0.234 45.2 122.3-105.2 8.6 5.2 -17.3 0.2 22 22 V C S S- 0 0 4 -21,-0.1 3,-0.1 1,-0.1 10,-0.1 -0.329 70.9-102.7 -73.4 154.5 3.2 -14.6 -1.5 23 23 V P > - 0 0 74 0, 0.0 3,-0.9 0, 0.0 -1,-0.1 -0.367 51.7 -91.3 -62.7 153.3 4.3 -12.9 -4.7 24 24 V T T 3 S+ 0 0 131 1,-0.3 3,-0.1 -3,-0.1 -19,-0.0 -0.368 116.2 33.2 -63.0 147.6 5.8 -9.4 -4.0 25 25 V G T 3 S+ 0 0 50 1,-0.2 2,-1.4 -3,-0.1 -1,-0.3 0.775 74.8 163.1 74.1 25.8 3.1 -6.8 -4.2 26 26 V C < + 0 0 9 -3,-0.9 -19,-1.4 1,-0.2 -20,-0.9 -0.624 10.1 149.0 -81.2 93.8 0.4 -9.1 -2.8 27 27 V N + 0 0 74 -2,-1.4 2,-0.4 -21,-0.2 -1,-0.2 0.439 45.1 66.1-114.5 4.3 -2.0 -6.5 -1.8 28 28 V S > - 0 0 68 -21,-0.2 3,-1.2 -3,-0.1 -21,-0.1 -0.984 62.0-147.2-136.2 129.9 -5.5 -8.1 -2.3 29 29 V D G > S+ 0 0 81 -2,-0.4 3,-1.3 1,-0.3 -1,-0.1 0.785 95.3 69.7 -56.9 -34.3 -7.0 -11.0 -0.4 30 30 V D G 3 S+ 0 0 123 1,-0.3 -1,-0.3 3,-0.0 -23,-0.0 0.773 113.2 27.8 -61.5 -26.0 -8.8 -12.2 -3.5 31 31 V K G < S+ 0 0 160 -3,-1.2 -1,-0.3 2,-0.0 -2,-0.2 0.013 90.4 124.6-119.4 19.1 -5.6 -13.3 -5.0 32 32 V C < - 0 0 22 -3,-1.3 -10,-0.0 1,-0.1 -3,-0.0 -0.762 35.5-174.9 -87.8 123.5 -3.5 -14.0 -2.0 33 33 V P > + 0 0 40 0, 0.0 3,-2.2 0, 0.0 2,-0.2 0.175 31.7 142.0 -93.3 6.4 -2.0 -17.5 -1.8 34 34 V C T 3 S+ 0 0 33 1,-0.3 -14,-0.1 -14,-0.0 -2,-0.1 -0.419 78.1 4.7 -61.7 126.2 -0.6 -17.2 1.6 35 35 V G T 3 0 0 75 1,-0.2 -1,-0.3 -2,-0.2 -15,-0.0 0.590 360.0 360.0 75.0 10.9 -1.0 -20.5 3.4 36 36 V N < 0 0 191 -3,-2.2 -1,-0.2 0, 0.0 0, 0.0 -0.233 360.0 360.0 -68.9 360.0 -2.5 -22.3 0.4