==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 28-NOV-03 1RMK . COMPND 2 MOLECULE: MU-O-CONOTOXIN MRVIB; . SOURCE 2 ORGANISM_SCIENTIFIC: CONUS MARMOREUS; . AUTHOR N.L.DALY,J.A.EKBERG,L.THOMAS,D.J.ADAMS,R.J.LEWIS,D.J.CRAIK . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2506.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 41.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 106 0, 0.0 17,-0.5 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 146.0 3.6 -9.9 -0.9 2 2 A a E -a 18 0A 46 15,-0.1 17,-0.3 1,-0.0 2,-0.2 -0.721 360.0-125.9 -89.6 132.0 4.8 -6.3 -0.7 3 3 A S E -a 19 0A 12 15,-1.7 17,-1.4 -2,-0.4 2,-0.1 -0.507 22.7-118.6 -76.9 143.4 3.1 -3.7 -2.8 4 4 A K > - 0 0 119 -2,-0.2 3,-1.8 15,-0.2 26,-0.1 -0.454 27.3-109.6 -79.9 152.5 5.1 -1.6 -5.2 5 5 A K T 3 S+ 0 0 59 1,-0.3 25,-2.7 -2,-0.1 2,-0.2 0.957 115.8 29.4 -47.4 -72.6 5.1 2.2 -4.7 6 6 A W T 3 S+ 0 0 219 23,-0.2 -1,-0.3 2,-0.1 25,-0.1 0.034 111.2 90.0 -82.4 33.3 3.2 3.3 -7.7 7 7 A E S < S- 0 0 82 -3,-1.8 2,-0.4 -2,-0.2 23,-0.1 0.416 89.2 -69.6 -96.2-125.9 1.2 0.1 -7.6 8 8 A Y + 0 0 139 21,-0.2 21,-0.3 -4,-0.1 2,-0.3 -0.991 53.3 148.0-142.2 131.7 -2.0 -0.6 -5.7 9 9 A b - 0 0 1 -2,-0.4 19,-0.5 19,-0.3 17,-0.4 -0.838 21.5-161.3-165.0 123.1 -2.6 -0.8 -2.0 10 10 A I - 0 0 56 -2,-0.3 7,-1.2 18,-0.2 15,-0.1 -0.833 6.4-156.3-107.7 144.0 -5.6 0.1 0.2 11 11 A V + 0 0 65 -2,-0.3 5,-0.2 15,-0.3 2,-0.1 -0.532 17.9 179.0-120.3 67.4 -5.5 0.6 3.9 12 12 A P > - 0 0 54 0, 0.0 2,-3.0 0, 0.0 3,-1.9 -0.442 41.6-111.0 -69.2 137.7 -9.0 -0.0 5.4 13 13 A I T 3 S+ 0 0 172 1,-0.3 3,-0.1 -2,-0.1 -2,-0.0 -0.349 113.8 45.5 -69.5 67.2 -9.3 0.3 9.1 14 14 A L T 3 S- 0 0 172 -2,-3.0 -1,-0.3 0, 0.0 2,-0.2 0.121 127.8 -8.5-173.4 -32.3 -9.9 -3.4 9.6 15 15 A G < + 0 0 46 -3,-1.9 2,-0.3 2,-0.0 -5,-0.0 -0.806 63.6 174.5-179.7 135.5 -7.2 -4.9 7.4 16 16 A F - 0 0 140 -2,-0.2 -5,-0.2 -5,-0.2 -7,-0.0 -0.946 27.8-108.4-146.6 166.2 -4.7 -3.8 4.9 17 17 A V - 0 0 63 -7,-1.2 2,-0.3 -2,-0.3 8,-0.1 -0.015 31.4-126.5 -81.3-169.4 -1.8 -4.9 2.7 18 18 A Y E -a 2 0A 141 -17,-0.5 -15,-1.7 6,-0.1 6,-0.1 -0.989 9.6-137.6-149.0 135.8 1.8 -4.0 3.1 19 19 A c E -a 3 0A 15 -2,-0.3 -15,-0.2 -17,-0.3 3,-0.1 -0.306 41.5 -78.9 -83.9 171.9 4.5 -2.5 0.8 20 20 A a S > S- 0 0 35 -17,-1.4 3,-2.8 1,-0.2 -1,-0.2 -0.331 70.3 -71.0 -68.2 153.4 8.1 -3.6 0.5 21 21 A P T 3 S+ 0 0 140 0, 0.0 -1,-0.2 0, 0.0 3,-0.1 -0.257 127.4 27.1 -51.5 114.5 10.5 -2.4 3.2 22 22 A G T 3 S+ 0 0 71 1,-0.4 2,-0.3 -3,-0.1 -2,-0.1 -0.072 106.5 83.9 122.1 -31.4 10.9 1.3 2.6 23 23 A L < - 0 0 54 -3,-2.8 2,-0.4 -20,-0.1 -1,-0.4 -0.778 58.8-157.5-105.3 149.3 7.5 2.0 1.0 24 24 A I - 0 0 105 7,-3.0 7,-2.4 -2,-0.3 -6,-0.1 -0.988 22.0-112.7-130.4 135.1 4.2 2.7 2.7 25 25 A b B +B 30 0B 27 -2,-0.4 5,-0.3 5,-0.3 -15,-0.1 -0.251 47.6 147.4 -61.8 148.0 0.7 2.3 1.4 26 26 A G + 0 0 22 3,-3.2 2,-2.7 -17,-0.4 -15,-0.3 -0.250 56.0 10.7-145.8-126.3 -1.4 5.4 0.9 27 27 A P S S- 0 0 104 0, 0.0 3,-0.1 0, 0.0 -17,-0.1 -0.364 127.9 -55.7 -69.2 68.0 -4.2 6.7 -1.5 28 28 A F S S+ 0 0 115 -2,-2.7 -19,-0.3 -19,-0.5 2,-0.2 0.684 133.3 60.1 65.5 22.1 -4.8 3.3 -3.1 29 29 A V S S- 0 0 46 -20,-0.3 -3,-3.2 -21,-0.3 2,-0.3 -0.698 86.7 -99.3-150.1-160.9 -1.1 3.2 -4.0 30 30 A c B B 25 0B 1 -25,-2.7 -5,-0.3 -5,-0.3 -26,-0.1 -0.931 360.0 360.0-133.9 156.7 2.2 3.3 -2.2 31 31 A V 0 0 79 -7,-2.4 -7,-3.0 -2,-0.3 -12,-0.1 -0.912 360.0 360.0-139.1 360.0 4.8 6.0 -1.5