==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROPEPTIDE 16-OCT-07 2RMD . COMPND 2 MOLECULE: ASTRESSIN-B; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.R.R.GRACE,M.H.PERRIN,J.P.CANTLE,W.W.VALE,J.E.RIVIER,R.RIEK . 33 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3605.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 81.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 24.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 54.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 193 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 44.6 -13.7 8.9 -5.8 2 2 A L > + 0 0 117 0, 0.0 4,-1.1 0, 0.0 0, 0.0 0.067 360.0 70.2 171.1 -33.2 -11.2 7.9 -3.1 3 3 A T T >4 S+ 0 0 86 2,-0.2 3,-1.7 1,-0.2 4,-0.3 0.990 98.7 47.6 -67.6 -63.1 -7.9 7.6 -4.9 4 4 A X T 34 S+ 0 0 167 1,-0.3 -1,-0.2 2,-0.1 4,-0.1 0.750 110.1 58.2 -49.9 -25.5 -7.3 11.3 -5.6 5 5 A H T 34 S+ 0 0 165 2,-0.1 -1,-0.3 3,-0.1 -2,-0.2 0.844 105.7 51.8 -73.7 -35.7 -8.2 11.7 -1.9 6 6 A L S X< S+ 0 0 94 -3,-1.7 3,-0.6 -4,-1.1 4,-0.2 0.877 87.5 71.3 -64.1-105.9 -5.4 9.4 -0.8 7 7 A L T > S+ 0 0 50 -4,-0.3 3,-4.3 1,-0.2 5,-0.1 0.156 76.7 73.2 24.3-130.6 -2.1 10.4 -2.3 8 8 A R T 3> S+ 0 0 176 1,-0.3 4,-3.6 2,-0.2 5,-0.4 -0.069 106.3 37.5 37.3 -94.3 -1.0 13.6 -0.6 9 9 A E H <> S+ 0 0 120 -3,-0.6 4,-3.0 1,-0.2 -1,-0.3 0.810 127.0 43.1 -48.2 -33.3 -0.1 12.0 2.7 10 10 A V H <> S+ 0 0 61 -3,-4.3 4,-3.7 2,-0.2 5,-0.3 0.975 111.9 48.2 -76.8 -62.7 1.2 9.2 0.5 11 11 A L H 4 S+ 0 0 102 1,-0.2 4,-0.3 2,-0.2 -2,-0.2 0.828 124.5 37.5 -46.3 -35.3 3.0 11.2 -2.2 12 12 A E H >X S+ 0 0 132 -4,-3.6 3,-3.0 2,-0.2 4,-0.8 0.959 114.5 50.6 -81.0 -60.4 4.5 13.0 0.8 13 13 A X H >X S+ 0 0 71 -4,-3.0 4,-2.7 -5,-0.4 3,-1.7 0.880 100.7 65.1 -43.7 -48.9 5.0 10.2 3.2 14 14 A A H 3X S+ 0 0 40 -4,-3.7 4,-0.8 1,-0.3 -1,-0.3 0.801 96.4 60.0 -45.7 -31.5 6.7 8.2 0.5 15 15 A R H <4 S+ 0 0 180 -3,-3.0 -1,-0.3 -5,-0.3 -2,-0.2 0.892 113.4 33.5 -64.7 -41.5 9.3 11.0 0.8 16 16 A A H << S+ 0 0 79 -3,-1.7 -2,-0.2 -4,-0.8 -1,-0.2 0.618 122.2 50.1 -87.5 -16.0 9.9 10.2 4.4 17 17 A E H >X S+ 0 0 67 -4,-2.7 2,-3.7 -5,-0.3 4,-1.6 0.416 75.5 112.5 -99.2 -2.6 9.3 6.5 3.7 18 18 A Q T 3< S+ 0 0 143 -4,-0.8 -1,-0.1 -5,-0.4 -3,-0.1 -0.292 85.1 35.7 -69.5 59.9 11.7 6.6 0.7 19 19 A X T 3> S+ 0 0 145 -2,-3.7 4,-1.1 -5,-0.0 -1,-0.2 0.139 115.3 47.2-174.0 -40.9 14.1 4.4 2.6 20 20 A A H <> S+ 0 0 43 -3,-0.7 4,-2.9 2,-0.2 -2,-0.1 0.933 103.7 60.0 -81.6 -53.2 12.0 1.9 4.7 21 21 A Q H X S+ 0 0 90 -4,-1.6 4,-3.1 2,-0.2 5,-0.5 0.887 105.9 50.8 -39.1 -55.4 9.6 0.9 2.0 22 22 A E H > S+ 0 0 83 -5,-0.4 4,-3.2 1,-0.3 5,-0.2 0.962 111.9 43.1 -47.8 -70.2 12.5 -0.4 -0.1 23 23 A A H X S+ 0 0 55 -4,-1.1 4,-1.5 2,-0.2 -1,-0.3 0.791 117.0 55.2 -47.5 -29.6 14.1 -2.5 2.7 24 24 A H H >X S+ 0 0 94 -4,-2.9 3,-1.5 2,-0.2 4,-0.6 0.999 111.9 35.3 -66.9 -73.4 10.5 -3.5 3.3 25 25 A K H >X S+ 0 0 85 -4,-3.1 4,-4.1 1,-0.3 3,-0.7 0.754 114.1 65.1 -52.6 -24.2 9.4 -4.8 -0.1 26 26 A N H 3X S+ 0 0 66 -4,-3.2 4,-2.7 -5,-0.5 -1,-0.3 0.900 90.7 60.3 -65.5 -42.3 13.0 -6.0 -0.2 27 27 A R H << S+ 0 0 159 -3,-1.5 -1,-0.3 -4,-1.5 -2,-0.2 0.688 118.4 32.4 -58.4 -17.8 12.3 -8.4 2.7 28 28 A K H XX S+ 0 0 99 -3,-0.7 4,-3.7 -4,-0.6 3,-1.1 0.780 112.0 58.8-104.5 -44.6 9.8 -9.9 0.3 29 29 A L H 3X S+ 0 0 75 -4,-4.1 4,-1.1 1,-0.3 -2,-0.2 0.803 107.1 52.7 -55.6 -29.8 11.5 -9.3 -3.0 30 30 A X H 3< S+ 0 0 108 -4,-2.7 -1,-0.3 -5,-0.2 -2,-0.1 0.751 115.0 39.7 -77.1 -25.9 14.3 -11.4 -1.6 31 31 A E H <4 S+ 0 0 149 -3,-1.1 -2,-0.2 -5,-0.3 -1,-0.2 0.747 106.5 63.6 -91.8 -29.9 11.8 -14.1 -0.7 32 32 A X H < 0 0 151 -4,-3.7 -2,-0.2 0, 0.0 -3,-0.2 0.858 360.0 360.0 -61.6 -36.4 9.8 -13.8 -3.9 33 33 A I < 0 0 160 -4,-1.1 -3,-0.0 -5,-0.3 0, 0.0 -0.040 360.0 360.0 -43.0 360.0 12.9 -14.8 -5.8