==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROPEPTIDE 16-OCT-07 2RME . COMPND 2 MOLECULE: STRESSIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.R.R.GRACE,M.H.PERRIN,J.P.CANTLE,W.W.VALE,J.E.RIVIER,R.RIEK . 38 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4393.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 11 28.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A P 0 0 160 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 90.9 -9.5 29.3 12.1 2 2 A P - 0 0 98 0, 0.0 2,-0.3 0, 0.0 3,-0.2 -0.228 360.0-147.5 -75.0 167.8 -10.6 27.1 9.3 3 3 A I + 0 0 142 1,-0.2 0, 0.0 3,-0.0 0, 0.0 -0.989 68.7 22.3-139.8 146.6 -11.0 23.3 9.5 4 4 A S S S+ 0 0 106 -2,-0.3 -1,-0.2 1,-0.0 0, 0.0 0.962 101.3 85.8 63.7 54.3 -10.5 20.4 7.1 5 5 A L S S+ 0 0 105 -3,-0.2 -1,-0.0 3,-0.0 -2,-0.0 -0.068 79.0 47.0-178.3 57.6 -8.1 22.4 4.8 6 6 A D S S+ 0 0 147 0, 0.0 4,-0.1 0, 0.0 3,-0.1 0.174 113.6 34.6-164.7 -51.9 -4.6 22.2 6.0 7 7 A L S S+ 0 0 121 1,-0.1 4,-0.1 2,-0.1 -3,-0.0 -0.172 95.8 90.8-110.5 36.3 -3.6 18.6 6.8 8 8 A T S > S+ 0 0 55 2,-0.1 3,-3.4 1,-0.1 4,-0.5 0.865 74.1 60.2 -94.7 -49.4 -5.8 17.1 4.1 9 9 A X T > S+ 0 0 156 1,-0.3 3,-1.7 2,-0.2 5,-0.2 0.787 96.4 66.2 -49.0 -30.5 -3.3 17.0 1.2 10 10 A H T 3> S+ 0 0 97 1,-0.3 4,-2.3 -4,-0.1 5,-0.4 0.774 90.0 64.0 -63.1 -26.5 -1.3 14.7 3.5 11 11 A L H <> S+ 0 0 88 -3,-3.4 2,-0.8 1,-0.3 4,-0.5 0.683 89.5 70.8 -70.0 -18.0 -4.1 12.3 3.1 12 12 A L H <4 S+ 0 0 98 -3,-1.7 -1,-0.3 -4,-0.5 -2,-0.1 -0.397 119.1 11.5 -95.9 54.4 -3.2 12.1 -0.5 13 13 A R H 4 S+ 0 0 154 -2,-0.8 -2,-0.2 -3,-0.3 -1,-0.2 0.076 125.9 56.2 167.2 -30.9 0.0 10.3 0.1 14 14 A E H X S+ 0 0 98 -4,-2.3 4,-0.9 2,-0.2 -3,-0.2 0.875 115.5 35.5 -87.9 -45.4 -0.2 9.1 3.7 15 15 A V T < S+ 0 0 65 -4,-0.5 -3,-0.1 -5,-0.4 -4,-0.1 0.681 118.0 54.8 -80.4 -20.0 -3.4 7.2 3.5 16 16 A L T 4 S+ 0 0 96 -5,-0.3 -1,-0.2 1,-0.2 -2,-0.2 0.600 103.1 57.4 -86.3 -14.1 -2.5 6.1 -0.0 17 17 A E T 4 S+ 0 0 155 -3,-0.1 2,-0.3 1,-0.1 -2,-0.2 0.778 118.2 23.1 -84.6 -30.8 0.8 4.7 1.4 18 18 A X S < S+ 0 0 107 -4,-0.9 -1,-0.1 1,-0.1 -5,-0.1 -0.890 110.8 37.4-133.9 163.6 -1.0 2.4 3.8 19 19 A A S S+ 0 0 45 -2,-0.3 -1,-0.1 1,-0.1 -3,-0.1 0.525 110.2 70.8 73.2 5.3 -4.4 0.8 4.2 20 20 A R S S+ 0 0 146 -3,-0.1 3,-0.1 -4,-0.1 -2,-0.1 0.667 103.1 31.7-117.5 -38.5 -4.2 0.4 0.4 21 21 A A S > S+ 0 0 48 -4,-0.2 3,-1.7 1,-0.2 -3,-0.1 0.610 104.6 76.0 -95.0 -17.6 -1.5 -2.3 -0.0 22 22 A E T 3 S+ 0 0 170 1,-0.3 3,-0.3 2,-0.2 -1,-0.2 0.718 98.9 46.8 -65.0 -21.2 -2.4 -4.0 3.2 23 23 A Q T 3 S+ 0 0 129 1,-0.2 -1,-0.3 -3,-0.1 -2,-0.1 -0.131 123.0 32.5-111.6 33.9 -5.4 -5.4 1.4 24 24 A L S < S+ 0 0 103 -3,-1.7 -2,-0.2 3,-0.0 -1,-0.2 0.089 100.1 76.3-177.3 36.9 -3.5 -6.5 -1.7 25 25 A A S S+ 0 0 39 -3,-0.3 -4,-0.1 3,-0.0 -2,-0.0 -0.205 107.3 13.3-151.2 47.0 -0.0 -7.5 -0.4 26 26 A Q S S+ 0 0 163 -3,-0.0 4,-0.5 0, 0.0 3,-0.2 -0.071 127.2 40.7-179.7 -61.8 -0.5 -10.8 1.2 27 27 A Q S > S+ 0 0 161 1,-0.2 3,-1.2 2,-0.2 4,-0.2 0.833 106.3 65.5 -76.3 -34.8 -3.8 -12.5 0.4 28 28 A E T >> S+ 0 0 51 1,-0.3 4,-1.2 2,-0.2 3,-1.2 0.787 95.4 60.3 -57.0 -28.6 -3.7 -11.3 -3.2 29 29 A H H 3> S+ 0 0 110 1,-0.3 4,-1.1 2,-0.2 5,-0.3 0.831 97.1 57.7 -68.1 -33.2 -0.7 -13.6 -3.6 30 30 A S H <4 S+ 0 0 61 -3,-1.2 -1,-0.3 -4,-0.5 -2,-0.2 0.468 105.1 54.1 -75.4 -1.3 -2.9 -16.5 -2.6 31 31 A K H <4 S+ 0 0 116 -3,-1.2 -1,-0.2 -4,-0.2 -2,-0.2 0.746 95.6 64.4 -99.6 -34.2 -5.0 -15.5 -5.6 32 32 A R H < S- 0 0 138 -4,-1.2 -2,-0.2 -3,-0.1 -3,-0.1 0.953 77.1-165.8 -53.3 -57.1 -2.2 -15.6 -8.1 33 33 A K < + 0 0 120 -4,-1.1 -3,-0.1 4,-0.0 -1,-0.1 0.965 32.6 144.6 65.4 54.7 -1.7 -19.3 -7.8 34 34 A L S S- 0 0 142 -5,-0.3 -4,-0.0 1,-0.1 -5,-0.0 0.937 81.7 -4.6 -85.5 -59.0 1.6 -19.3 -9.6 35 35 A X S S+ 0 0 174 2,-0.1 -1,-0.1 1,-0.0 -2,-0.0 -0.358 108.7 95.4-134.5 53.3 3.5 -22.0 -7.6 36 36 A E + 0 0 113 -6,-0.0 -6,-0.0 -4,-0.0 -1,-0.0 0.825 49.0 171.1-104.4 -63.1 1.1 -22.9 -4.8 37 37 A I 0 0 139 -4,-0.0 -2,-0.1 0, 0.0 -3,-0.1 0.369 360.0 360.0 61.2 155.6 -0.8 -26.0 -5.9 38 38 A I 0 0 177 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.223 360.0 360.0 -84.7 360.0 -3.0 -27.9 -3.5