==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 16-OCT-07 2RMF . COMPND 2 MOLECULE: UROCORTIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.R.R.GRACE,M.H.PERRIN,J.P.CANTLE,W.W.VALE,J.E.RIVIER,R.RIEK . 40 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3953.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 34 85.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 31 77.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A D 0 0 212 0, 0.0 3,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-176.7 -3.5 34.5 -10.7 2 3 A N - 0 0 112 1,-0.2 0, 0.0 2,-0.1 0, 0.0 -0.576 360.0-158.9 -73.6 122.5 -3.3 32.0 -7.9 3 4 A P - 0 0 101 0, 0.0 -1,-0.2 0, 0.0 5,-0.1 0.685 21.5-145.7 -72.8 -17.4 0.3 30.6 -7.5 4 5 A S > + 0 0 33 3,-0.1 4,-3.9 1,-0.1 5,-0.2 0.757 44.7 151.1 56.6 28.3 -1.2 27.6 -5.6 5 6 A L H > S+ 0 0 121 1,-0.2 4,-1.1 2,-0.2 5,-0.2 0.930 78.4 35.5 -53.1 -50.3 1.9 27.5 -3.4 6 7 A S H > S+ 0 0 65 1,-0.2 4,-1.5 2,-0.2 -1,-0.2 0.730 118.6 55.0 -76.0 -23.0 -0.1 26.0 -0.5 7 8 A I H > S+ 0 0 68 2,-0.2 4,-4.9 3,-0.2 5,-0.5 0.916 100.2 57.2 -76.4 -45.2 -2.2 24.0 -3.0 8 9 A D H X S+ 0 0 93 -4,-3.9 4,-3.0 2,-0.2 5,-0.2 0.960 113.0 39.4 -49.1 -62.8 0.6 22.3 -4.7 9 10 A L H X S+ 0 0 100 -4,-1.1 4,-4.1 -5,-0.2 5,-0.3 0.930 122.4 43.6 -53.6 -50.5 2.0 20.7 -1.5 10 11 A T H X S+ 0 0 60 -4,-1.5 4,-3.7 2,-0.2 5,-0.4 0.968 116.6 45.1 -61.1 -54.9 -1.6 20.0 -0.3 11 12 A F H X S+ 0 0 135 -4,-4.9 4,-1.1 1,-0.2 -1,-0.2 0.833 119.1 45.7 -57.9 -32.4 -2.8 18.7 -3.6 12 13 A H H X S+ 0 0 113 -4,-3.0 4,-1.9 -5,-0.5 -2,-0.2 0.940 117.2 40.9 -76.3 -50.5 0.4 16.7 -3.8 13 14 A L H X S+ 0 0 95 -4,-4.1 4,-2.1 -5,-0.2 -2,-0.2 0.925 115.8 50.6 -64.9 -44.6 0.4 15.3 -0.3 14 15 A L H X S+ 0 0 55 -4,-3.7 4,-1.6 -5,-0.3 5,-0.2 0.884 106.6 56.8 -61.0 -36.4 -3.4 14.7 -0.3 15 16 A R H X S+ 0 0 117 -4,-1.1 4,-4.3 -5,-0.4 3,-0.4 0.950 106.3 49.1 -57.8 -50.1 -2.8 12.8 -3.6 16 17 A T H X S+ 0 0 78 -4,-1.9 4,-3.5 1,-0.2 5,-0.4 0.908 104.6 58.8 -55.9 -46.2 -0.3 10.5 -1.9 17 18 A L H X S+ 0 0 104 -4,-2.1 4,-0.9 1,-0.2 -1,-0.2 0.876 119.5 29.7 -52.8 -40.3 -2.8 9.8 0.9 18 19 A L H X S+ 0 0 60 -4,-1.6 4,-3.8 -3,-0.4 5,-0.2 0.860 118.6 55.4 -87.4 -40.0 -5.3 8.5 -1.6 19 20 A E H X S+ 0 0 86 -4,-4.3 4,-2.6 -5,-0.2 -3,-0.2 0.913 111.8 44.8 -57.7 -44.3 -2.8 7.2 -4.1 20 21 A L H X S+ 0 0 90 -4,-3.5 4,-2.7 -5,-0.3 -1,-0.2 0.891 115.4 47.7 -67.4 -40.7 -1.2 5.1 -1.5 21 22 A A H X S+ 0 0 39 -4,-0.9 4,-3.6 -5,-0.4 -2,-0.2 0.937 113.0 48.0 -66.1 -47.3 -4.6 3.9 -0.2 22 23 A R H X S+ 0 0 163 -4,-3.8 4,-3.1 2,-0.2 -2,-0.2 0.951 114.8 45.2 -58.3 -51.6 -5.8 3.1 -3.7 23 24 A T H X S+ 0 0 83 -4,-2.6 4,-1.6 -5,-0.2 5,-0.2 0.934 114.5 49.0 -58.5 -46.6 -2.6 1.2 -4.5 24 25 A Q H >X S+ 0 0 89 -4,-2.7 4,-3.9 1,-0.2 3,-0.5 0.951 112.0 48.8 -57.2 -48.5 -2.8 -0.5 -1.1 25 26 A S H 3X S+ 0 0 30 -4,-3.6 4,-3.4 1,-0.2 5,-0.4 0.913 102.4 63.7 -55.1 -45.8 -6.4 -1.4 -1.8 26 27 A Q H 3X S+ 0 0 119 -4,-3.1 4,-0.6 1,-0.2 -1,-0.2 0.884 116.2 28.9 -46.8 -45.7 -5.4 -2.7 -5.2 27 28 A R H < S+ 0 0 100 -4,-3.6 3,-2.3 -5,-0.2 -2,-0.2 0.919 113.8 57.7 -72.9 -45.2 -10.1 -15.0 3.2 37 38 A F H >< S+ 0 0 150 -4,-3.0 3,-0.7 -5,-0.3 -2,-0.2 0.902 109.8 44.7 -51.0 -46.8 -9.7 -17.9 0.8 38 39 A D T 3< S+ 0 0 152 -4,-2.7 -1,-0.3 1,-0.2 -2,-0.2 0.371 123.8 38.1 -80.4 4.7 -7.2 -19.6 3.2 39 40 A S T < 0 0 90 -3,-2.3 -1,-0.2 -5,-0.1 -2,-0.2 -0.264 360.0 360.0-151.7 55.5 -9.5 -18.8 6.1 40 41 A V < 0 0 177 -3,-0.7 -3,-0.1 0, 0.0 -4,-0.0 -0.616 360.0 360.0 -86.6 360.0 -13.2 -19.3 5.0