==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 16-OCT-07 2RMG . COMPND 2 MOLECULE: UROCORTIN-2; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.R.R.GRACE,M.H.PERRIN,J.P.CANTLE,W.W.VALE,J.E.RIVIER,R.RIEK . 38 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3849.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 65.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 47.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 4 A I 0 0 197 0, 0.0 4,-0.1 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 -67.2 13.7 -5.9 4.7 2 5 A V - 0 0 128 2,-0.0 3,-0.0 0, 0.0 0, 0.0 0.896 360.0 -34.1 -95.9 -66.7 16.0 -6.6 1.8 3 6 A L S S- 0 0 167 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.564 101.8 -49.9-121.4 -84.6 19.0 -4.2 2.0 4 7 A S - 0 0 77 4,-0.0 -2,-0.0 -3,-0.0 0, 0.0 0.608 42.8-178.5-124.6 -71.1 18.5 -0.7 3.3 5 8 A L + 0 0 70 -4,-0.1 7,-0.2 1,-0.0 6,-0.1 0.633 53.7 113.7 69.4 15.1 15.6 1.3 1.7 6 9 A D S > S+ 0 0 116 2,-0.1 3,-1.5 1,-0.1 4,-0.1 0.952 70.9 48.3 -79.8 -54.4 16.6 4.2 4.0 7 10 A V T 3 S+ 0 0 143 1,-0.3 2,-0.8 2,-0.1 3,-0.5 0.944 116.4 44.8 -50.6 -53.7 17.8 6.6 1.3 8 11 A P T >> S+ 0 0 45 0, 0.0 4,-1.0 0, 0.0 3,-0.7 -0.171 71.4 133.8 -86.8 44.8 14.6 6.0 -0.8 9 12 A I H <> + 0 0 64 -3,-1.5 4,-2.5 -2,-0.8 3,-0.2 0.784 67.9 62.1 -64.0 -23.9 12.4 6.3 2.3 10 13 A G H 3> S+ 0 0 38 -3,-0.5 4,-2.9 2,-0.2 -1,-0.3 0.864 94.6 60.2 -69.2 -34.0 10.2 8.5 0.2 11 14 A L H <> S+ 0 0 131 -3,-0.7 4,-0.5 1,-0.2 -1,-0.2 0.850 116.1 33.5 -61.0 -34.6 9.6 5.7 -2.2 12 15 A L H < S+ 0 0 54 -4,-1.0 -2,-0.2 -7,-0.2 -1,-0.2 0.761 113.9 58.9 -91.8 -28.1 8.1 3.7 0.7 13 16 A Q H >X S+ 0 0 85 -4,-2.5 3,-2.6 1,-0.2 4,-0.6 0.902 98.5 60.8 -66.1 -39.5 6.6 6.8 2.4 14 17 A I H >X>S+ 0 0 80 -4,-2.9 4,-2.0 1,-0.3 3,-1.4 0.890 94.4 62.2 -53.3 -41.5 4.6 7.5 -0.7 15 18 A L H 3<5S+ 0 0 124 -4,-0.5 -1,-0.3 1,-0.3 -2,-0.2 0.606 114.6 35.1 -61.5 -9.7 2.9 4.1 -0.2 16 19 A L H <45S+ 0 0 80 -3,-2.6 -1,-0.3 -4,-0.2 -2,-0.2 0.333 120.0 49.4-123.2 0.9 1.6 5.6 3.0 17 20 A E H <<5S+ 0 0 142 -3,-1.4 4,-0.3 -4,-0.6 -3,-0.2 0.821 126.2 17.7-105.1 -54.9 1.1 9.2 1.9 18 21 A Q T <5S+ 0 0 106 -4,-2.0 4,-0.2 1,-0.2 -3,-0.2 0.455 118.1 68.5 -99.0 -0.8 -0.9 9.0 -1.3 19 22 A A S > S+ 0 0 181 1,-0.2 4,-1.9 2,-0.2 -2,-0.1 0.981 104.2 28.4 -54.5 -65.5 -4.2 6.6 2.2 21 24 A A H 4 S+ 0 0 48 -4,-0.3 4,-0.3 1,-0.2 -1,-0.2 0.545 126.3 51.6 -74.7 -6.0 -7.1 7.8 0.1 22 25 A R H 4 S+ 0 0 128 -4,-0.2 3,-0.3 2,-0.1 4,-0.3 0.848 115.4 36.6 -95.0 -44.3 -6.2 5.2 -2.5 23 26 A A H >X S+ 0 0 41 -4,-4.7 4,-4.8 1,-0.2 3,-0.6 0.709 104.4 73.0 -79.9 -21.5 -6.0 2.2 -0.2 24 27 A A H 3X S+ 0 0 60 -4,-1.9 4,-0.8 -5,-0.5 -1,-0.2 0.861 99.2 46.6 -61.8 -33.5 -8.9 3.4 1.8 25 28 A R H 34 S+ 0 0 161 -3,-0.3 4,-0.4 -4,-0.3 -1,-0.3 0.644 121.4 38.5 -80.7 -15.4 -11.2 2.5 -1.1 26 29 A E H <>>S+ 0 0 96 -3,-0.6 4,-4.4 -4,-0.3 5,-0.6 0.780 103.9 65.2-101.7 -37.4 -9.5 -0.8 -1.3 27 30 A Q H X5S+ 0 0 131 -4,-4.8 4,-0.8 1,-0.2 -3,-0.2 0.827 110.4 41.0 -55.1 -34.2 -9.0 -1.7 2.3 28 31 A A H X5S+ 0 0 71 -4,-0.8 4,-1.3 -5,-0.3 -1,-0.2 0.865 123.8 37.1 -82.0 -40.1 -12.8 -1.8 2.7 29 32 A T H >5S+ 0 0 79 -4,-0.4 4,-3.3 2,-0.2 -2,-0.2 0.928 116.3 50.7 -78.0 -48.9 -13.4 -3.6 -0.6 30 33 A T H X5S+ 0 0 49 -4,-4.4 4,-2.4 2,-0.2 6,-0.2 0.903 108.2 55.0 -57.0 -41.5 -10.4 -5.9 -0.5 31 34 A N H X