==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 16-OCT-07 2RMH . COMPND 2 MOLECULE: UROCORTIN-3; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.R.R.GRACE,M.H.PERRIN,J.P.CANTLE,W.W.VALE,J.E.RIVIER,R.RIEK . 38 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3766.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 60.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 47.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 4 A F > 0 0 194 0, 0.0 2,-1.3 0, 0.0 3,-0.7 0.000 360.0 360.0 360.0 134.2 -11.2 12.4 3.2 2 5 A T G > - 0 0 86 1,-0.3 3,-3.2 2,-0.1 0, 0.0 -0.374 360.0 -48.7 -59.2 90.7 -13.0 15.3 1.5 3 6 A L G 3 S- 0 0 158 -2,-1.3 -1,-0.3 1,-0.3 0, 0.0 0.821 109.2 -56.0 44.9 39.8 -15.6 13.4 -0.6 4 7 A S G < S+ 0 0 115 -3,-0.7 -1,-0.3 1,-0.1 2,-0.2 0.367 123.1 104.7 77.5 -3.7 -12.8 11.1 -1.8 5 8 A L < + 0 0 122 -3,-3.2 2,-0.4 1,-0.1 -3,-0.1 -0.288 45.1 109.8-102.6 48.6 -10.8 14.1 -3.2 6 9 A D + 0 0 51 -2,-0.2 -1,-0.1 1,-0.1 -2,-0.1 -0.674 27.5 126.6-123.3 75.0 -8.2 14.1 -0.3 7 10 A V + 0 0 81 -2,-0.4 -1,-0.1 4,-0.1 -2,-0.0 -0.418 31.0 163.8-128.9 58.2 -5.0 12.9 -1.8 8 11 A P >> - 0 0 52 0, 0.0 4,-4.9 0, 0.0 3,-1.7 -0.210 56.2 -95.5 -71.6 165.5 -2.4 15.6 -0.9 9 12 A T H 3> S+ 0 0 102 1,-0.3 4,-2.2 2,-0.2 5,-0.3 0.860 128.3 53.4 -48.4 -42.1 1.4 15.1 -1.1 10 13 A N H 34 S+ 0 0 132 1,-0.2 4,-0.4 2,-0.2 -1,-0.3 0.750 120.8 33.0 -66.9 -23.5 1.4 14.2 2.7 11 14 A I H <> S+ 0 0 47 -3,-1.7 4,-4.7 2,-0.1 5,-0.3 0.835 114.1 57.2 -97.4 -45.8 -1.2 11.6 1.9 12 15 A M H X S+ 0 0 85 -4,-4.9 4,-4.3 2,-0.2 5,-0.3 0.935 109.2 46.9 -51.1 -53.4 -0.1 10.6 -1.6 13 16 A N H X S+ 0 0 106 -4,-2.2 4,-2.4 -5,-0.3 -1,-0.2 0.925 117.5 43.6 -55.6 -46.6 3.4 9.7 -0.4 14 17 A L H > S+ 0 0 115 -4,-0.4 4,-4.0 -5,-0.3 -2,-0.2 0.962 117.0 45.2 -63.4 -52.3 1.8 7.7 2.5 15 18 A L H X S+ 0 0 88 -4,-4.7 4,-3.3 1,-0.2 5,-0.3 0.932 113.7 50.6 -56.2 -47.9 -0.8 6.1 0.3 16 19 A F H X S+ 0 0 139 -4,-4.3 4,-1.6 -5,-0.3 -1,-0.2 0.890 115.4 43.1 -57.4 -41.7 1.8 5.4 -2.3 17 20 A N H X S+ 0 0 116 -4,-2.4 4,-3.5 -5,-0.3 5,-0.3 0.937 114.0 50.0 -71.0 -47.0 4.0 3.8 0.4 18 21 A I H X S+ 0 0 112 -4,-4.0 4,-4.1 1,-0.2 5,-0.3 0.972 114.3 43.7 -54.6 -57.9 1.1 1.9 2.0 19 22 A A H X S+ 0 0 49 -4,-3.3 4,-2.5 1,-0.2 5,-0.3 0.869 114.7 54.0 -54.5 -36.9 -0.1 0.5 -1.3 20 23 A K H X S+ 0 0 108 -4,-1.6 4,-2.1 -5,-0.3 -2,-0.2 0.970 117.6 32.1 -61.8 -57.6 3.6 -0.2 -1.9 21 24 A A H X S+ 0 0 55 -4,-3.5 4,-2.5 2,-0.2 5,-0.2 0.856 119.8 53.6 -70.5 -36.2 4.3 -2.2 1.3 22 25 A K H X S+ 0 0 151 -4,-4.1 4,-1.8 -5,-0.3 -3,-0.2 0.931 113.6 41.3 -65.7 -45.5 0.7 -3.6 1.4 23 26 A N H X S+ 0 0 63 -4,-2.5 4,-3.3 -5,-0.3 5,-0.3 0.905 113.4 55.1 -68.7 -39.9 0.9 -5.0 -2.2 24 27 A L H < S+ 0 0 87 -4,-2.1 4,-0.5 -5,-0.3 -2,-0.2 0.959 115.7 36.9 -54.6 -55.3 4.5 -6.2 -1.6 25 28 A R H X S+ 0 0 169 -4,-2.5 4,-3.3 2,-0.2 5,-0.5 0.774 115.6 57.2 -68.8 -28.0 3.5 -8.2 1.5 26 29 A A H X S+ 0 0 42 -4,-1.8 4,-1.5 -5,-0.2 -2,-0.2 0.952 113.2 37.0 -69.5 -49.6 0.2 -9.1 -0.2 27 30 A Q H < S+ 0 0 106 -4,-3.3 -1,-0.2 3,-0.2 -2,-0.2 0.496 125.3 44.6 -81.0 -1.8 1.8 -10.7 -3.3 28 31 A A H > S+ 0 0 25 -4,-0.5 7,-0.7 -5,-0.3 4,-0.6 0.820 126.2 24.4-104.0 -52.5 4.6 -12.1 -1.0 29 32 A A H < S+ 0 0 32 -4,-3.3 -3,-0.2 6,-0.2 -2,-0.2 0.627 132.3 39.8 -89.3 -16.2 2.7 -13.4 2.0 30 33 A A T < S+ 0 0 80 -4,-1.5 -3,-0.2 -5,-0.5 -1,-0.1 0.384 107.2 61.9-113.4 2.3 -0.6 -14.0 0.2 31 34 A N T 4 S+ 0 0 98 -5,-0.1 -3,-0.1 1,-0.0 -2,-0.1 0.915 122.9 10.9 -92.2 -55.3 0.6 -15.4 -3.2 32 35 A A S < S- 0 0 31 -4,-0.6 -2,-0.1 -5,-0.1 -3,-0.1 0.263 90.0-132.4-106.8 9.5 2.5 -18.6 -2.3 33 36 A H S S+ 0 0 153 1,-0.2 -4,-0.1 2,-0.0 -3,-0.1 0.707 102.4 50.2 44.9 24.3 1.2 -18.8 1.4 34 37 A L S S+ 0 0 105 -6,-0.4 3,-0.5 3,-0.0 4,-0.3 0.184 72.1 101.5-171.6 22.4 4.9 -19.4 2.2 35 38 A M S S+ 0 0 112 -7,-0.7 -6,-0.2 1,-0.2 -5,-0.1 0.459 83.5 53.7 -93.9 -3.3 7.0 -16.7 0.5 36 39 A A S S+ 0 0 40 -7,-0.1 -1,-0.2 -8,-0.1 -7,-0.1 -0.216 88.2 81.6-123.1 40.2 7.3 -14.7 3.7 37 40 A Q 0 0 134 -3,-0.5 -2,-0.1 0, 0.0 -1,-0.1 0.810 360.0 360.0-107.2 -55.8 8.8 -17.4 6.0 38 41 A I 0 0 225 -4,-0.3 -2,-0.1 0, 0.0 -3,-0.0 -0.088 360.0 360.0 42.6 360.0 12.6 -17.6 5.2