==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 24-NOV-95 1ROF . COMPND 2 MOLECULE: FERREDOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: THERMOTOGA MARITIMA; . AUTHOR P.ROESCH,H.STICHT,G.WILDEGGER,D.BENTROP,B.DARIMONT,R.STERNER . 60 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3817.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 41.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 8.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 11.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 64 0, 0.0 57,-0.2 0, 0.0 37,-0.1 0.000 360.0 360.0 360.0 1.4 20.3 5.9 11.9 2 2 A K + 0 0 1 35,-0.3 56,-0.3 56,-0.0 37,-0.2 -0.143 360.0 127.4-162.7 54.7 16.9 5.5 10.4 3 3 A V S S+ 0 0 63 54,-1.7 2,-0.8 1,-0.2 55,-0.2 0.794 70.1 63.0 -89.4 -27.2 16.2 1.9 9.2 4 4 A R E S-A 57 0A 124 53,-1.5 53,-2.2 33,-0.1 2,-0.4 -0.830 74.0-165.5 -99.6 108.7 12.8 1.6 11.1 5 5 A V E -A 56 0A 47 -2,-0.8 2,-0.7 51,-0.2 51,-0.2 -0.766 8.9-151.1 -95.7 137.0 10.3 4.2 9.7 6 6 A D > + 0 0 54 49,-0.5 4,-1.3 -2,-0.4 49,-0.1 -0.872 24.3 164.0-108.4 105.9 7.2 4.9 11.7 7 7 A A T 4 S+ 0 0 35 -2,-0.7 3,-0.2 2,-0.2 25,-0.2 0.956 74.6 51.4 -84.1 -63.9 4.3 6.0 9.4 8 8 A D T 4 S+ 0 0 146 1,-0.2 -1,-0.1 23,-0.1 -2,-0.1 0.796 114.5 51.3 -44.9 -26.3 1.2 5.7 11.5 9 9 A A T 4 S+ 0 0 34 44,-0.1 -1,-0.2 46,-0.0 -2,-0.2 0.943 87.6 91.4 -79.9 -49.9 3.2 7.8 14.0 10 10 A C < - 0 0 21 -4,-1.3 23,-0.1 -3,-0.2 21,-0.0 -0.022 58.0-163.4 -42.1 149.5 4.2 10.6 11.6 11 11 A I - 0 0 133 21,-0.1 -1,-0.1 19,-0.0 20,-0.1 -0.106 40.9-105.4-133.1 39.4 1.7 13.5 11.7 12 12 A G S S+ 0 0 56 1,-0.1 19,-0.1 20,-0.1 14,-0.0 0.909 71.6 141.6 36.5 71.3 2.5 15.5 8.6 13 13 A C - 0 0 71 19,-0.1 -1,-0.1 0, 0.0 -3,-0.0 0.807 60.0-118.4-107.5 -46.8 4.2 18.4 10.5 14 14 A G + 0 0 32 11,-0.1 4,-0.1 18,-0.1 12,-0.1 0.775 69.9 125.8 109.6 45.0 7.2 19.4 8.4 15 15 A V S S+ 0 0 40 10,-0.1 4,-0.4 3,-0.1 36,-0.2 0.471 74.8 45.6-109.4 -5.4 10.3 18.7 10.6 16 16 A C S > S+ 0 0 18 2,-0.2 4,-1.4 9,-0.1 8,-0.2 0.857 102.4 55.4-102.3 -58.0 12.1 16.5 8.0 17 17 A E T 4 S+ 0 0 89 8,-0.4 7,-0.1 1,-0.3 9,-0.1 0.895 113.5 48.1 -44.0 -40.5 12.0 18.3 4.6 18 18 A N T 4 S+ 0 0 90 1,-0.1 -1,-0.3 -4,-0.1 -2,-0.2 0.953 108.6 55.6 -67.0 -46.4 13.5 21.3 6.4 19 19 A L T 4 S- 0 0 38 -4,-0.4 -2,-0.2 1,-0.2 -3,-0.1 0.966 129.0 -33.5 -47.5 -77.5 16.2 19.1 8.0 20 20 A a X - 0 0 24 -4,-1.4 4,-1.0 4,-0.5 3,-0.3 -0.968 40.8-138.4-154.8 136.4 17.7 17.5 4.9 21 21 A P T 4 S+ 0 0 78 0, 0.0 4,-0.1 0, 0.0 -4,-0.1 0.602 95.0 76.2 -68.5 -15.2 16.2 16.5 1.5 22 22 A D T 4 S- 0 0 84 2,-0.1 3,-0.1 1,-0.1 -5,-0.1 0.985 126.0 -17.5 -64.1 -59.8 18.4 13.3 1.7 23 23 A V T 4 S+ 0 0 1 -3,-0.3 12,-1.6 12,-0.2 2,-1.1 0.613 127.4 70.9-122.1 -26.7 16.3 11.3 4.1 24 24 A F B < S+B 34 0B 2 -4,-1.0 -4,-0.5 -8,-0.2 2,-0.2 -0.736 73.7 102.5 -97.6 95.1 14.1 13.8 5.9 25 25 A Q - 0 0 75 -2,-1.1 -8,-0.4 8,-0.5 2,-0.3 -0.590 57.3-116.7-145.0-152.3 11.5 14.9 3.3 26 26 A L - 0 0 90 -2,-0.2 6,-0.2 -10,-0.1 2,-0.1 -0.919 12.9-135.8-150.0 175.7 7.9 14.3 2.4 27 27 A G - 0 0 30 4,-0.5 5,-0.0 -2,-0.3 8,-0.0 -0.397 33.5 -98.7-121.1-159.4 5.7 12.9 -0.4 28 28 A D S S+ 0 0 169 -2,-0.1 4,-0.1 1,-0.1 -1,-0.0 0.785 114.0 65.1 -96.7 -32.7 2.5 13.9 -2.2 29 29 A D S S- 0 0 112 1,-0.2 2,-0.3 2,-0.1 -1,-0.1 0.668 110.1-120.7 -64.7 -11.1 0.1 11.7 -0.2 30 30 A G S S+ 0 0 42 1,-0.3 -3,-0.2 -19,-0.0 -1,-0.2 -0.253 73.9 128.1 100.2 -48.1 1.0 13.8 2.8 31 31 A K - 0 0 90 -2,-0.3 2,-1.1 1,-0.1 -4,-0.5 -0.165 52.1-149.1 -44.1 119.4 2.4 10.9 4.9 32 32 A A + 0 0 11 -25,-0.2 -1,-0.1 -6,-0.2 -6,-0.1 -0.717 36.3 149.9 -98.4 89.4 5.9 12.1 5.9 33 33 A K - 0 0 105 -2,-1.1 -8,-0.5 1,-0.1 2,-0.2 -0.342 53.2 -67.7-105.4-169.1 8.0 8.9 6.2 34 34 A V B -B 24 0B 26 1,-0.2 -10,-0.2 21,-0.1 -1,-0.1 -0.588 35.1-176.8 -83.0 144.3 11.7 8.3 5.6 35 35 A L S S+ 0 0 82 -12,-1.6 -12,-0.2 -2,-0.2 -1,-0.2 0.730 74.4 50.8-105.8 -37.2 13.0 8.6 2.0 36 36 A Q - 0 0 53 -13,-0.4 3,-0.4 1,-0.2 -1,-0.2 -0.868 64.8-163.4-106.1 136.4 16.6 7.5 2.9 37 37 A P S S+ 0 0 63 0, 0.0 2,-1.5 0, 0.0 -35,-0.3 0.972 88.1 29.2 -79.2 -73.2 17.3 4.4 4.8 38 38 A E S S- 0 0 118 -37,-0.1 2,-0.9 -35,-0.1 3,-0.1 -0.313 79.4-177.5 -87.4 58.1 20.9 4.7 6.1 39 39 A T + 0 0 4 -2,-1.5 5,-0.1 -3,-0.4 -36,-0.0 -0.348 10.3 168.9 -57.6 100.5 20.8 8.5 6.2 40 40 A D + 0 0 135 -2,-0.9 -1,-0.2 3,-0.0 5,-0.1 0.666 34.9 120.4 -89.3 -16.5 24.4 9.0 7.3 41 41 A L S > S- 0 0 28 1,-0.2 3,-0.7 -3,-0.1 4,-0.2 0.071 77.9-114.5 -41.5 162.6 24.1 12.8 6.7 42 42 A P T 3 S+ 0 0 119 0, 0.0 4,-0.4 0, 0.0 -1,-0.2 0.316 105.7 75.8 -84.6 4.6 24.8 15.1 9.6 43 43 A a T 3> S+ 0 0 21 1,-0.2 4,-1.2 2,-0.1 -2,-0.1 0.584 84.9 59.9 -94.7 -9.0 21.1 16.3 9.6 44 44 A A H <> S+ 0 0 2 -3,-0.7 4,-1.5 2,-0.2 -1,-0.2 0.658 88.7 72.0 -93.5 -11.0 19.6 13.1 11.1 45 45 A K H > S+ 0 0 151 -4,-0.2 4,-0.6 1,-0.2 3,-0.2 0.961 112.1 30.5 -63.2 -46.1 21.6 13.4 14.3 46 46 A D H >> S+ 0 0 99 -4,-0.4 4,-1.1 1,-0.2 3,-0.9 0.838 107.0 73.4 -79.9 -34.0 19.4 16.4 15.1 47 47 A A H >X S+ 0 0 0 -4,-1.2 4,-1.5 1,-0.3 3,-0.6 0.872 90.9 61.6 -49.1 -33.9 16.4 14.9 13.3 48 48 A A H 3< S+ 0 0 53 -4,-1.5 -1,-0.3 1,-0.3 -2,-0.2 0.947 111.3 35.8 -59.7 -45.6 16.2 12.5 16.2 49 49 A D H << S+ 0 0 152 -3,-0.9 -1,-0.3 -4,-0.6 -2,-0.2 0.459 125.6 45.9 -86.6 1.1 15.6 15.4 18.6 50 50 A S H << S+ 0 0 43 -4,-1.1 -3,-0.2 -3,-0.6 -2,-0.2 0.800 85.9 80.6-105.2 -72.2 13.5 17.1 15.9 51 51 A C >< - 0 0 20 -4,-1.5 3,-1.0 -36,-0.2 -1,-0.1 -0.125 63.8-156.1 -40.4 118.8 11.1 14.7 14.2 52 52 A P T 3 S+ 0 0 88 0, 0.0 -1,-0.2 0, 0.0 -4,-0.0 0.633 90.5 59.4 -77.0 -15.4 8.1 14.6 16.7 53 53 A T T 3 S- 0 0 20 -47,-0.0 -43,-0.2 0, 0.0 -2,-0.1 0.410 92.2-144.2 -94.1 5.3 7.1 11.2 15.3 54 54 A G < + 0 0 53 -3,-1.0 -6,-0.1 1,-0.2 -44,-0.0 0.887 55.3 141.1 32.9 45.1 10.5 9.6 16.2 55 55 A A + 0 0 3 1,-0.1 2,-1.6 -50,-0.1 -49,-0.5 0.736 43.0 78.0 -90.8 -22.6 9.8 7.7 13.0 56 56 A I E S-A 5 0A 23 -51,-0.2 2,-0.4 -9,-0.1 -51,-0.2 -0.647 73.1-174.0 -86.1 89.0 13.4 7.8 11.7 57 57 A S E -A 4 0A 44 -53,-2.2 -54,-1.7 -2,-1.6 -53,-1.5 -0.724 24.1-129.0 -91.1 136.3 14.7 5.0 14.0 58 58 A V + 0 0 72 -2,-0.4 -20,-0.1 -56,-0.3 -1,-0.0 -0.671 37.6 160.5 -85.6 103.1 18.3 4.1 14.0 59 59 A E 0 0 114 -2,-1.1 -1,-0.1 0, 0.0 -2,-0.0 -0.326 360.0 360.0-111.4 43.6 18.6 0.4 13.5 60 60 A E 0 0 162 -22,-0.0 -2,-0.1 0, 0.0 -22,-0.0 -0.784 360.0 360.0 -90.1 360.0 22.2 0.9 12.4