==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 21-MAR-08 2ROG . COMPND 2 MOLECULE: HEAVY METAL BINDING PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: THERMUS THERMOPHILUS; . AUTHOR D.SAKAKIBARA,A.SASAKI,T.IKEYA,J.HAMATSU,H.KOYAMA,M.MISHIMA, . 66 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5157.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 47 71.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 16 24.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 10.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 9.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 17 25.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 186 0, 0.0 2,-0.3 0, 0.0 42,-0.2 0.000 360.0 360.0 360.0 105.1 9.8 7.9 2.2 2 2 A L E -A 42 0A 74 40,-2.2 40,-2.7 2,-0.0 2,-0.4 -0.833 360.0-139.4-127.1 165.3 7.6 6.9 -0.8 3 3 A K E -AB 41 65A 93 62,-0.7 62,-2.2 -2,-0.3 2,-0.4 -0.986 8.0-159.4-133.9 141.9 3.8 7.2 -1.3 4 4 A L E -AB 40 64A 4 36,-2.1 36,-2.1 -2,-0.4 2,-0.4 -0.967 14.3-137.7-122.7 131.0 1.4 4.7 -3.0 5 5 A K E -AB 39 63A 95 58,-3.2 58,-1.9 -2,-0.4 2,-0.4 -0.797 21.4-161.5 -87.2 136.8 -2.0 5.6 -4.4 6 6 A V E + B 0 62A 26 32,-3.0 2,-0.3 -2,-0.4 56,-0.2 -0.969 16.2 164.0-124.4 133.1 -4.6 2.9 -3.6 7 7 A E E + B 0 61A 127 54,-2.5 54,-2.3 -2,-0.4 2,-0.5 -0.947 32.2 51.5-145.1 163.8 -8.0 2.5 -5.4 8 8 A G S S+ 0 0 36 -2,-0.3 2,-1.5 52,-0.2 52,-0.1 -0.960 89.9 43.3 120.5-123.4 -10.8 0.0 -5.9 9 9 A M - 0 0 118 -2,-0.5 2,-1.9 1,-0.1 5,-0.1 -0.529 68.9-156.3 -68.0 83.0 -12.8 -1.7 -3.1 10 10 A T + 0 0 132 -2,-1.5 2,-0.3 4,-0.1 -1,-0.1 -0.458 45.1 125.8 -68.0 78.7 -13.3 1.2 -0.7 11 11 A C > - 0 0 82 -2,-1.9 4,-0.5 1,-0.1 3,-0.1 -0.932 65.7-120.5-137.8 161.8 -13.8 -0.8 2.5 12 12 A N H >> S+ 0 0 145 -2,-0.3 3,-1.5 1,-0.2 4,-0.5 0.961 107.4 51.0 -69.3 -57.8 -12.3 -0.9 6.0 13 13 A H H >> S+ 0 0 156 1,-0.3 4,-1.4 2,-0.2 3,-0.5 0.701 96.0 72.2 -60.5 -19.1 -10.9 -4.5 6.1 14 14 A C H 3> S+ 0 0 22 1,-0.2 4,-2.4 2,-0.2 -1,-0.3 0.899 89.4 61.7 -63.3 -34.0 -9.1 -4.0 2.8 15 15 A V H < S+ 0 0 12 -4,-2.3 3,-1.2 -5,-0.3 -2,-0.2 0.976 112.4 45.4 -73.1 -52.1 3.0 -5.1 1.9 23 23 A K H 3< S+ 0 0 70 -4,-2.1 -1,-0.2 -5,-0.3 -2,-0.2 0.502 87.4 95.4 -69.4 -3.7 5.1 -5.8 5.0 24 24 A K T 3< S+ 0 0 127 -4,-0.7 -1,-0.3 -3,-0.2 -2,-0.1 0.852 76.2 65.6 -53.6 -40.7 5.2 -9.6 4.1 25 25 A V S < S- 0 0 65 -3,-1.2 2,-0.4 -4,-0.3 4,-0.3 -0.703 102.4-108.4 -85.2 136.5 8.6 -9.0 2.4 26 26 A P S S+ 0 0 131 0, 0.0 2,-0.1 0, 0.0 -2,-0.1 -0.538 90.3 72.9 -65.4 115.1 11.4 -8.1 4.8 27 27 A G S S+ 0 0 50 -2,-0.4 18,-0.1 -4,-0.2 3,-0.1 -0.392 90.3 24.2-177.9 -92.8 12.0 -4.4 4.0 28 28 A V + 0 0 20 -3,-0.2 2,-1.5 -6,-0.2 -5,-0.1 0.958 55.9 171.3 -64.8 -57.4 9.8 -1.4 4.8 29 29 A E + 0 0 131 -4,-0.3 2,-0.8 -10,-0.1 -1,-0.2 -0.103 61.2 84.2 66.2 -31.6 7.9 -2.7 7.9 30 30 A K E +C 43 0A 132 -2,-1.5 13,-2.3 13,-0.7 2,-0.4 -0.857 57.3 153.5-101.2 102.8 6.5 0.9 8.4 31 31 A V E -C 42 0A 16 -2,-0.8 2,-0.3 11,-0.2 11,-0.2 -0.997 17.1-177.0-137.4 127.1 3.4 1.2 6.1 32 32 A E E -C 41 0A 142 9,-2.7 9,-1.9 -2,-0.4 2,-0.3 -0.930 8.1-164.8-129.1 144.8 0.5 3.6 6.6 33 33 A V E -C 40 0A 44 -2,-0.3 2,-0.3 7,-0.2 7,-0.2 -0.968 27.5-113.3-128.1 143.0 -2.9 4.1 4.8 34 34 A S - 0 0 37 5,-2.8 5,-0.0 -2,-0.3 -19,-0.0 -0.569 13.0-151.1 -77.5 137.3 -5.3 7.1 5.1 35 35 A L S S+ 0 0 170 -2,-0.3 -1,-0.1 1,-0.1 -20,-0.0 0.932 97.7 36.7 -72.3 -48.1 -8.7 6.4 6.6 36 36 A E S S+ 0 0 181 2,-0.0 2,-0.3 3,-0.0 -1,-0.1 0.668 123.8 35.5 -80.8 -21.0 -10.4 9.2 4.7 37 37 A K S S- 0 0 122 2,-0.2 2,-0.7 0, 0.0 -3,-0.3 -0.915 80.7-115.4-131.8 161.6 -8.5 8.9 1.4 38 38 A G S S+ 0 0 36 -2,-0.3 -32,-3.0 -5,-0.1 2,-0.4 -0.202 76.1 121.7 -86.2 36.2 -7.0 6.1 -0.7 39 39 A E E -A 5 0A 87 -2,-0.7 -5,-2.8 -34,-0.2 2,-0.3 -0.884 40.4-172.2-104.3 141.6 -3.4 7.5 -0.1 40 40 A A E -AC 4 33A 3 -36,-2.1 -36,-2.1 -2,-0.4 2,-0.3 -0.965 7.5-159.5-133.2 146.1 -0.7 5.5 1.5 41 41 A L E -AC 3 32A 92 -9,-1.9 -9,-2.7 -2,-0.3 2,-0.3 -0.950 7.9-164.9-125.9 144.3 2.8 6.4 2.7 42 42 A V E -AC 2 31A 13 -40,-2.7 -40,-2.2 -2,-0.3 2,-0.5 -0.993 10.4-156.5-135.4 141.3 5.7 4.1 3.4 43 43 A E E + C 0 30A 118 -13,-2.3 -13,-0.7 -2,-0.3 2,-0.3 -0.896 57.7 66.9-125.1 104.2 9.1 4.5 5.2 44 44 A G S S- 0 0 34 -2,-0.5 -16,-0.1 2,-0.1 -2,-0.1 -0.933 83.8 -94.1 174.8-168.8 11.8 2.1 4.1 45 45 A T + 0 0 147 -2,-0.3 -17,-0.0 -18,-0.1 -2,-0.0 0.174 68.6 133.1-117.4 12.7 14.0 1.4 1.1 46 46 A A - 0 0 40 1,-0.1 -2,-0.1 -21,-0.1 -19,-0.1 -0.294 63.7 -90.0 -64.7 156.3 11.9 -1.4 -0.7 47 47 A D > - 0 0 118 1,-0.1 4,-1.1 4,-0.0 -1,-0.1 -0.155 23.5-126.8 -64.3 154.9 11.3 -1.2 -4.5 48 48 A P H >> S+ 0 0 62 0, 0.0 4,-2.3 0, 0.0 3,-0.7 0.969 110.6 50.4 -67.7 -51.6 8.3 0.6 -6.0 49 49 A K H 3> S+ 0 0 140 1,-0.2 4,-3.3 2,-0.2 5,-0.4 0.879 101.8 62.6 -55.5 -40.3 7.2 -2.4 -8.1 50 50 A A H 3> S+ 0 0 44 1,-0.2 4,-2.1 2,-0.2 -1,-0.2 0.879 111.2 38.0 -53.3 -45.2 7.4 -4.7 -5.0 51 51 A L H <>S+ 0 0 4 -4,-2.2 3,-1.2 1,-0.2 5,-0.9 0.850 108.9 63.4 -73.9 -32.7 -1.2 -5.1 -3.7 56 56 A E H ><5S+ 0 0 101 -4,-2.1 3,-1.8 1,-0.3 -2,-0.2 0.856 91.2 66.6 -56.5 -39.2 -2.1 -5.9 -7.4 57 57 A E T 3<5S+ 0 0 150 -4,-1.8 -1,-0.3 1,-0.3 -2,-0.2 0.760 93.8 57.6 -54.8 -34.1 -2.2 -9.7 -6.5 58 58 A E T < 5S- 0 0 115 -3,-1.2 -1,-0.3 -4,-0.4 -2,-0.2 0.674 121.0-106.6 -73.1 -16.9 -5.3 -9.2 -4.3 59 59 A G T < 5S+ 0 0 48 -3,-1.8 -3,-0.2 -4,-0.4 -2,-0.1 0.390 80.8 127.3 103.3 0.2 -7.2 -7.7 -7.3 60 60 A Y < - 0 0 48 -5,-0.9 -1,-0.3 -52,-0.1 2,-0.3 -0.278 57.1-118.1 -78.8 172.3 -7.0 -4.1 -5.9 61 61 A K E +B 7 0A 150 -54,-2.3 -54,-2.5 -3,-0.1 2,-0.3 -0.864 37.0 159.5-116.4 149.2 -5.7 -1.1 -8.0 62 62 A A E -B 6 0A 25 -2,-0.3 2,-0.3 -56,-0.2 -56,-0.2 -0.975 22.9-160.0-158.6 170.0 -2.7 1.1 -7.2 63 63 A E E -B 5 0A 114 -58,-1.9 -58,-3.2 -2,-0.3 2,-0.3 -0.928 22.6-129.2-158.0 127.6 -0.1 3.6 -8.6 64 64 A V E -B 4 0A 50 -2,-0.3 2,-0.5 -60,-0.2 -60,-0.2 -0.661 16.9-159.3 -81.6 142.1 3.3 4.6 -7.2 65 65 A L E B 3 0A 82 -62,-2.2 -62,-0.7 -2,-0.3 -2,-0.0 -0.917 360.0 360.0-125.6 94.8 3.9 8.4 -6.9 66 66 A A 0 0 115 -2,-0.5 -1,-0.2 -64,-0.1 -62,-0.0 0.893 360.0 360.0 -85.2 360.0 7.6 9.2 -6.7