==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-JUL-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 13-MAY-08 2RPA . COMPND 2 MOLECULE: KATANIN P60 ATPASE-CONTAINING SUBUNIT A1; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR N.IWAYA,Y.KUWAHARA,S.UNZAI,T.NAGATA,K.TOMII,N.GODA,H.TOCHIO, . 77 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6359.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 69 89.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 3.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 13 16.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 52 67.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 -5 A S 0 0 165 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 103.0 8.4 -5.0 -16.8 2 -4 A D - 0 0 114 8,-0.0 2,-0.5 2,-0.0 8,-0.0 -1.000 360.0-145.2-143.6 140.2 10.0 -7.9 -14.8 3 -3 A H - 0 0 163 -2,-0.3 2,-0.2 3,-0.0 3,-0.1 -0.900 20.2-177.0-109.2 131.7 8.7 -10.8 -12.8 4 -2 A M - 0 0 152 -2,-0.5 3,-0.2 1,-0.2 6,-0.0 -0.526 47.2 -39.9-114.7-177.0 10.4 -12.2 -9.7 5 -1 A T S S- 0 0 113 1,-0.2 4,-0.2 -2,-0.2 -1,-0.2 -0.163 85.3 -81.8 -46.4 126.8 9.9 -15.0 -7.3 6 1 A M S S+ 0 0 163 -3,-0.1 2,-0.3 2,-0.1 -1,-0.2 -0.032 89.2 112.4 -35.2 109.8 6.1 -15.3 -6.5 7 2 A S S S- 0 0 58 -3,-0.2 3,-0.3 1,-0.0 -3,-0.1 -0.974 78.0-104.9-171.1 175.4 5.7 -12.6 -3.9 8 3 A L S >> S+ 0 0 1 -2,-0.3 4,-2.8 1,-0.2 3,-1.1 0.302 90.0 100.1 -97.1 7.5 4.1 -9.2 -3.1 9 4 A Q H 3> S+ 0 0 102 1,-0.3 4,-3.2 -4,-0.2 5,-0.3 0.942 75.9 56.9 -57.2 -51.1 7.5 -7.5 -3.3 10 5 A M H 34 S+ 0 0 106 -3,-0.3 -1,-0.3 1,-0.2 4,-0.2 0.704 116.7 40.2 -54.6 -18.5 6.8 -6.2 -6.9 11 6 A I H X> S+ 0 0 19 -3,-1.1 3,-1.5 2,-0.1 4,-0.7 0.904 118.1 39.3 -94.0 -65.4 3.7 -4.6 -5.2 12 7 A V H >X S+ 0 0 21 -4,-2.8 4,-1.0 1,-0.3 3,-0.9 0.819 107.8 68.1 -55.5 -31.9 4.8 -3.2 -1.9 13 8 A E H 3X S+ 0 0 100 -4,-3.2 4,-1.1 -5,-0.4 3,-0.3 0.858 90.5 61.7 -56.8 -36.7 8.1 -2.2 -3.6 14 9 A N H <> S+ 0 0 57 -3,-1.5 4,-2.4 -5,-0.3 3,-0.3 0.851 95.1 62.6 -58.8 -35.4 6.1 0.4 -5.5 15 10 A V H S+ 0 0 76 -4,-1.3 4,-2.2 1,-0.2 5,-1.6 0.889 103.5 58.1 -71.3 -40.7 8.3 11.2 -4.7 22 17 A A H <5S+ 0 0 4 -4,-1.9 -1,-0.2 1,-0.2 5,-0.2 0.827 109.3 47.1 -58.6 -32.5 6.0 12.6 -2.0 23 18 A L H <5S+ 0 0 110 -4,-1.0 -2,-0.2 1,-0.2 -1,-0.2 0.957 107.8 52.0 -74.3 -53.6 9.1 13.8 -0.2 24 19 A L H <5S- 0 0 139 -4,-1.9 -2,-0.2 2,-0.1 -1,-0.2 0.864 128.5 -94.1 -51.0 -39.3 10.9 15.4 -3.2 25 20 A G T <5S+ 0 0 36 -4,-2.2 2,-1.2 -5,-0.1 3,-0.2 0.206 95.7 111.0 142.2 -14.1 7.7 17.3 -3.9 26 21 A N < + 0 0 79 -5,-1.6 4,-0.4 1,-0.2 -3,-0.2 -0.698 26.0 152.2 -92.6 87.4 5.9 15.2 -6.4 27 22 A Y >> + 0 0 67 -2,-1.2 4,-1.8 -5,-0.2 3,-0.9 0.849 66.5 65.2 -82.1 -37.5 2.9 14.0 -4.4 28 23 A D H 3> S+ 0 0 115 1,-0.3 4,-1.6 -3,-0.2 -1,-0.2 0.854 101.2 52.1 -52.8 -37.2 0.6 13.6 -7.5 29 24 A S H 3> S+ 0 0 31 1,-0.2 4,-1.2 2,-0.2 -1,-0.3 0.791 106.2 54.5 -70.8 -28.2 3.0 10.8 -8.7 30 25 A A H <> S+ 0 0 0 -3,-0.9 4,-3.2 -4,-0.4 -2,-0.2 0.840 104.1 55.2 -73.8 -34.5 2.7 9.1 -5.3 31 26 A M H X S+ 0 0 38 -4,-1.8 4,-3.0 2,-0.2 5,-0.3 0.973 107.4 46.7 -62.6 -57.0 -1.1 9.0 -5.5 32 27 A V H X S+ 0 0 87 -4,-1.6 4,-1.0 1,-0.2 -1,-0.2 0.865 117.6 45.7 -53.5 -38.7 -1.3 7.2 -8.9 33 28 A Y H X S+ 0 0 91 -4,-1.2 4,-2.5 2,-0.2 3,-0.4 0.949 112.6 48.2 -70.7 -51.0 1.3 4.8 -7.6 34 29 A Y H X S+ 0 0 4 -4,-3.2 4,-2.5 1,-0.2 5,-0.3 0.939 108.9 53.5 -54.9 -51.5 -0.3 4.1 -4.2 35 30 A Q H X S+ 0 0 122 -4,-3.0 4,-1.2 1,-0.2 -1,-0.2 0.830 111.4 48.7 -53.8 -33.5 -3.7 3.6 -5.8 36 31 A G H X S+ 0 0 31 -4,-1.0 4,-2.8 -3,-0.4 5,-0.3 0.936 109.0 49.6 -73.6 -48.3 -2.1 1.0 -8.0 37 32 A V H X S+ 0 0 1 -4,-2.5 4,-2.9 1,-0.2 -2,-0.2 0.942 111.2 49.2 -55.7 -51.9 -0.2 -0.9 -5.3 38 33 A L H X S+ 0 0 8 -4,-2.5 4,-2.1 1,-0.2 -1,-0.2 0.882 112.5 49.3 -55.9 -40.6 -3.3 -1.2 -3.1 39 34 A D H X S+ 0 0 85 -4,-1.2 4,-1.4 -5,-0.3 -1,-0.2 0.923 114.5 43.2 -65.6 -45.6 -5.3 -2.5 -6.1 40 35 A Q H X S+ 0 0 85 -4,-2.8 4,-1.0 1,-0.2 -2,-0.2 0.820 111.0 57.4 -69.7 -31.6 -2.6 -5.1 -7.0 41 36 A M H >X S+ 0 0 0 -4,-2.9 4,-2.2 -5,-0.3 3,-0.7 0.937 102.9 52.2 -64.6 -48.2 -2.2 -6.0 -3.3 42 37 A N H 3X S+ 0 0 75 -4,-2.1 4,-2.4 1,-0.3 5,-0.3 0.921 103.5 57.7 -54.2 -48.1 -5.9 -6.9 -2.9 43 38 A K H 3X S+ 0 0 130 -4,-1.4 4,-1.1 1,-0.2 -1,-0.3 0.841 108.7 48.3 -52.1 -35.5 -5.8 -9.2 -5.9 44 39 A Y H X< S+ 0 0 64 -4,-1.0 3,-0.7 -3,-0.7 -2,-0.2 0.965 108.7 49.6 -70.8 -54.6 -3.0 -11.1 -4.1 45 40 A L H >< S+ 0 0 15 -4,-2.2 3,-0.9 1,-0.3 -2,-0.2 0.830 112.5 50.8 -53.8 -33.4 -4.7 -11.5 -0.8 46 41 A Y H 3< S+ 0 0 216 -4,-2.4 -1,-0.3 1,-0.2 -2,-0.2 0.812 104.3 56.4 -74.7 -31.3 -7.7 -12.7 -2.7 47 42 A S T << S+ 0 0 96 -4,-1.1 -1,-0.2 -3,-0.7 2,-0.2 0.261 91.1 106.2 -84.0 12.7 -5.6 -15.3 -4.6 48 43 A V < - 0 0 26 -3,-0.9 3,-0.1 -4,-0.1 -3,-0.0 -0.604 52.0-167.2 -93.4 154.6 -4.5 -16.7 -1.2 49 44 A K S S+ 0 0 200 -2,-0.2 2,-0.6 1,-0.1 -1,-0.1 0.550 70.0 77.6-112.9 -16.8 -5.6 -19.9 0.3 50 45 A D > - 0 0 107 1,-0.2 4,-2.2 2,-0.0 5,-0.3 -0.865 62.1-158.1-101.6 121.5 -4.3 -19.4 3.9 51 46 A T H > S+ 0 0 87 -2,-0.6 4,-2.8 1,-0.2 5,-0.2 0.874 96.7 54.1 -62.2 -38.3 -6.3 -17.1 6.1 52 47 A H H > S+ 0 0 147 2,-0.2 4,-0.9 1,-0.2 -1,-0.2 0.811 108.8 50.5 -66.0 -30.2 -3.2 -16.5 8.3 53 48 A L H > S+ 0 0 65 -3,-0.3 4,-1.2 2,-0.2 3,-0.3 0.956 119.3 33.1 -72.6 -52.7 -1.3 -15.4 5.2 54 49 A R H X S+ 0 0 90 -4,-2.2 4,-2.4 1,-0.2 -2,-0.2 0.812 109.2 69.2 -73.3 -30.9 -3.9 -12.9 3.8 55 50 A Q H X S+ 0 0 94 -4,-2.8 4,-0.9 -5,-0.3 -1,-0.2 0.870 100.9 47.8 -54.8 -39.0 -4.9 -12.0 7.4 56 51 A K H >X S+ 0 0 146 -4,-0.9 4,-1.9 -3,-0.3 3,-0.8 0.941 110.1 49.7 -68.3 -49.0 -1.5 -10.3 7.8 57 52 A W H 3X S+ 0 0 64 -4,-1.2 4,-3.1 1,-0.3 -2,-0.2 0.839 102.9 63.5 -59.0 -33.9 -1.6 -8.4 4.5 58 53 A Q H 3X S+ 0 0 81 -4,-2.4 4,-0.8 2,-0.2 -1,-0.3 0.870 107.2 42.8 -58.9 -38.1 -5.1 -7.2 5.5 59 54 A Q H XX S+ 0 0 108 -4,-0.9 4,-1.1 -3,-0.8 3,-1.0 0.977 118.1 41.4 -72.4 -59.1 -3.6 -5.3 8.4 60 55 A V H 3X S+ 0 0 52 -4,-1.9 4,-1.7 1,-0.3 3,-0.4 0.877 107.2 64.7 -56.6 -39.6 -0.6 -3.9 6.8 61 56 A W H 3X S+ 0 0 54 -4,-3.1 4,-1.7 -5,-0.3 -1,-0.3 0.856 97.7 56.1 -52.5 -37.7 -2.6 -3.1 3.7 62 57 A Q H X S+ 0 0 79 -4,-1.8 4,-2.0 2,-0.2 3,-1.2 0.964 110.7 47.4 -73.1 -55.3 -3.8 5.6 5.3 67 62 A E H 3X S+ 0 0 62 -4,-2.6 4,-1.9 1,-0.3 -2,-0.2 0.877 107.4 58.9 -53.9 -40.5 -0.3 7.0 4.5 68 63 A A H 3X S+ 0 0 14 -4,-1.9 4,-0.6 -5,-0.2 -1,-0.3 0.817 106.8 48.4 -59.5 -31.2 -1.5 7.4 0.8 69 64 A K H XX S+ 0 0 126 -3,-1.2 3,-1.1 -4,-0.7 4,-0.8 0.904 104.9 56.7 -76.0 -43.7 -4.2 9.6 2.1 70 65 A Q H >X S+ 0 0 100 -4,-2.0 4,-2.0 1,-0.3 3,-1.4 0.894 98.5 62.1 -54.4 -43.0 -2.0 11.8 4.3 71 66 A V H 3X S+ 0 0 12 -4,-1.9 4,-2.3 1,-0.3 -1,-0.3 0.839 96.8 59.6 -52.6 -35.1 0.2 12.6 1.2 72 67 A K H << S+ 0 0 134 -3,-1.1 -1,-0.3 -4,-0.6 4,-0.3 0.835 108.2 45.2 -63.6 -33.0 -2.9 14.2 -0.3 73 68 A D H X< S+ 0 0 108 -3,-1.4 3,-1.9 -4,-0.8 -2,-0.2 0.972 112.8 46.2 -74.5 -58.4 -3.0 16.6 2.7 74 69 A I H 3< S+ 0 0 92 -4,-2.0 -2,-0.2 1,-0.3 -3,-0.2 0.877 111.8 53.5 -51.9 -41.2 0.6 17.6 2.9 75 70 A M T 3< S+ 0 0 86 -4,-2.3 2,-0.6 -5,-0.3 -1,-0.3 0.676 96.1 85.7 -68.6 -16.7 0.6 18.1 -0.9 76 71 A K < 0 0 142 -3,-1.9 -4,-0.0 -4,-0.3 -3,-0.0 -0.777 360.0 360.0 -91.6 122.4 -2.3 20.4 -0.4 77 72 A T 0 0 166 -2,-0.6 -3,-0.0 0, 0.0 -2,-0.0 -0.938 360.0 360.0-119.3 360.0 -1.4 24.0 0.4