==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RECEPTOR 26-FEB-10 2RQZ . COMPND 2 MOLECULE: NEUROGENIC LOCUS NOTCH HOMOLOG PROTEIN 1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.SHIMIZU,N.FUJITANI,K.HOSOGUCHI,S.NISHIMURA . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3344.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 42.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 15.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 189 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 163.7 -7.6 13.3 1.6 2 2 A V - 0 0 120 2,-0.0 2,-0.2 0, 0.0 0, 0.0 0.489 360.0-126.7 63.2 145.3 -7.6 9.7 2.8 3 3 A N - 0 0 124 1,-0.1 3,-0.1 20,-0.0 20,-0.1 -0.525 5.6-137.1-114.7-177.0 -4.6 7.4 2.6 4 4 A E S S+ 0 0 97 -2,-0.2 2,-1.0 1,-0.2 3,-0.2 0.694 91.7 61.3-111.5 -34.1 -3.9 4.0 1.2 5 5 A a + 0 0 48 1,-0.2 -1,-0.2 17,-0.1 11,-0.0 -0.721 63.5 124.0 -99.9 84.8 -1.7 2.4 3.9 6 6 A I S S+ 0 0 126 -2,-1.0 2,-0.3 -3,-0.1 -1,-0.2 0.839 81.8 15.7-102.7 -66.8 -4.0 2.4 7.0 7 7 A S S S- 0 0 114 -3,-0.2 -1,-0.1 1,-0.1 -2,-0.1 -0.432 127.6 -69.9-109.0 56.0 -4.3 -1.1 8.4 8 8 A N - 0 0 70 -2,-0.3 5,-0.1 1,-0.1 -3,-0.1 0.961 46.2-152.2 56.9 90.9 -1.3 -2.7 6.6 9 9 A P S S+ 0 0 23 0, 0.0 -1,-0.1 0, 0.0 16,-0.1 0.825 70.5 93.6 -60.6 -32.5 -2.3 -2.9 2.8 10 10 A b - 0 0 4 4,-0.2 26,-0.2 1,-0.1 3,-0.1 -0.188 64.1-154.8 -60.6 154.6 0.0 -5.9 2.4 11 11 A Q S S+ 0 0 124 24,-2.7 25,-0.1 25,-1.1 -1,-0.1 -0.080 84.6 54.1-123.2 32.2 -1.5 -9.3 2.8 12 12 A N S S- 0 0 55 23,-0.1 -1,-0.1 2,-0.0 25,-0.1 0.142 120.7 -87.1-150.0 20.1 1.6 -11.3 3.8 13 13 A D S S+ 0 0 154 1,-0.2 2,-0.2 -3,-0.1 23,-0.1 0.913 74.9 162.2 70.7 43.6 3.0 -9.4 6.8 14 14 A A - 0 0 16 22,-0.2 2,-0.4 21,-0.2 13,-0.2 -0.483 43.0-100.9 -92.7 164.9 5.0 -7.0 4.7 15 15 A T E -A 26 0A 92 11,-1.4 11,-2.9 -2,-0.2 2,-0.4 -0.733 31.1-144.2 -90.0 130.9 6.5 -3.7 5.7 16 16 A a E +A 25 0A 41 -2,-0.4 9,-0.2 9,-0.2 2,-0.2 -0.805 23.6 174.4 -97.6 132.2 4.6 -0.5 4.6 17 17 A L E -A 24 0A 92 7,-2.0 7,-0.9 -2,-0.4 2,-0.3 -0.515 34.2 -80.4-121.1-170.5 6.6 2.6 3.6 18 18 A D E +A 23 0A 153 -2,-0.2 2,-0.3 5,-0.1 5,-0.1 -0.730 47.8 165.0 -98.5 146.5 5.9 6.0 2.1 19 19 A Q - 0 0 95 3,-0.5 2,-1.0 -2,-0.3 5,-0.1 -0.847 46.3 -76.0-146.2-179.2 5.3 6.7 -1.6 20 20 A I S S- 0 0 149 -2,-0.3 3,-0.1 1,-0.2 -2,-0.0 -0.742 105.3 -37.4 -89.9 99.4 4.0 9.3 -4.0 21 21 A G S S+ 0 0 87 -2,-1.0 2,-0.3 1,-0.2 -1,-0.2 0.730 131.1 75.8 58.7 21.5 0.2 9.3 -3.8 22 22 A E S S- 0 0 123 -17,-0.0 -3,-0.5 -18,-0.0 2,-0.3 -0.863 82.7 -94.8-148.0-179.4 0.5 5.5 -3.4 23 23 A F E -A 18 0A 40 -2,-0.3 2,-0.5 -5,-0.1 -5,-0.1 -0.701 19.5-142.2-104.6 157.5 1.4 2.7 -1.0 24 24 A Q E -A 17 0A 53 -7,-0.9 -7,-2.0 -2,-0.3 2,-0.8 -0.792 19.2-177.7-122.1 88.0 4.7 0.9 -0.5 25 25 A b E -A 16 0A 20 -2,-0.5 2,-1.1 9,-0.2 -9,-0.2 -0.766 11.0-159.4 -89.9 108.3 4.2 -2.8 0.3 26 26 A I E -A 15 0A 66 -11,-2.9 -11,-1.4 -2,-0.8 -2,-0.0 -0.738 14.7-164.7 -91.0 96.1 7.6 -4.4 0.8 27 27 A c - 0 0 37 -2,-1.1 -12,-0.1 -13,-0.2 3,-0.1 -0.086 29.7 -79.3 -71.0 175.3 7.0 -8.2 0.3 28 28 A M > - 0 0 116 1,-0.1 3,-1.3 4,-0.1 2,-1.0 -0.129 60.7 -76.5 -70.1 171.6 9.3 -10.9 1.4 29 29 A P T 3 S+ 0 0 113 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 -0.603 121.0 11.4 -76.0 101.4 12.5 -11.9 -0.6 30 30 A G T 3 S+ 0 0 80 -2,-1.0 2,-0.1 1,-0.2 -2,-0.1 0.697 99.8 126.7 104.2 26.6 11.3 -13.9 -3.6 31 31 A Y < - 0 0 116 -3,-1.3 2,-0.3 2,-0.1 -1,-0.2 -0.380 40.4-149.8-104.2-175.5 7.6 -13.2 -3.4 32 32 A E > + 0 0 142 6,-1.5 5,-1.0 -2,-0.1 6,-0.3 -0.865 40.9 73.3-146.1 178.6 5.0 -11.8 -5.9 33 33 A G T 5S- 0 0 42 -2,-0.3 -6,-0.1 3,-0.2 3,-0.1 -0.157 71.1 -98.4 97.2 165.9 1.8 -9.8 -6.1 34 34 A V T 5S+ 0 0 116 1,-0.1 -9,-0.2 -2,-0.1 -1,-0.1 0.863 121.0 34.1 -90.0 -43.6 0.9 -6.2 -5.7 35 35 A Y T 5S- 0 0 80 -25,-0.1 -24,-2.7 -24,-0.1 -21,-0.2 -0.019 122.7 -98.2-101.0 28.5 -0.3 -6.2 -2.1 36 36 A c T 5S+ 0 0 0 -26,-0.2 -25,-1.1 -11,-0.2 -3,-0.2 0.979 95.3 102.8 52.9 80.6 2.1 -8.9 -1.1 37 37 A E < 0 0 86 -5,-1.0 -4,-0.2 -27,-0.1 -1,-0.1 0.369 360.0 360.0-152.4 -44.4 -0.0 -12.1 -1.3 38 38 A I 0 0 141 -6,-0.3 -6,-1.5 -7,-0.0 -27,-0.0 0.197 360.0 360.0 -89.9 360.0 0.8 -14.0 -4.4