==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RECEPTOR 26-FEB-10 2RR0 . COMPND 2 MOLECULE: NEUROGENIC LOCUS NOTCH HOMOLOG PROTEIN 1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.HOSOGUCHI,K.SHIMIZU,N.FUJITANI,S.NISHIMURA . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3338.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 34.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 218 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -32.4 -12.6 15.8 1.5 2 2 A V + 0 0 80 1,-0.2 4,-0.0 2,-0.1 0, 0.0 -0.495 360.0 137.0 -80.9 149.9 -11.6 12.6 -0.1 3 3 A N S S+ 0 0 139 -2,-0.2 3,-0.3 0, 0.0 -1,-0.2 0.325 77.7 31.9-155.9 -46.2 -9.7 12.5 -3.5 4 4 A E S >> S+ 0 0 109 1,-0.2 4,-0.6 2,-0.1 3,-0.6 0.761 118.2 53.2 -93.7 -31.1 -6.9 9.9 -3.4 5 5 A a T 34 S+ 0 0 52 1,-0.2 -1,-0.2 2,-0.1 11,-0.1 -0.188 84.8 91.4 -97.4 40.6 -8.6 7.5 -1.0 6 6 A I T 34 S+ 0 0 128 -3,-0.3 -1,-0.2 -2,-0.0 -2,-0.1 0.695 99.3 22.7-103.2 -27.9 -11.7 7.2 -3.1 7 7 A S T <4 S- 0 0 97 -3,-0.6 -2,-0.1 -4,-0.1 -3,-0.1 0.618 97.9-134.0-111.0 -23.0 -10.8 4.3 -5.3 8 8 A N < - 0 0 64 -4,-0.6 -3,-0.1 1,-0.1 6,-0.1 0.960 2.1-142.5 64.3 91.0 -8.1 2.7 -3.0 9 9 A P S S+ 0 0 37 0, 0.0 -1,-0.1 0, 0.0 26,-0.1 0.709 70.4 110.5 -55.1 -20.1 -5.1 1.8 -5.2 10 10 A b - 0 0 16 4,-0.1 26,-0.1 1,-0.1 27,-0.1 0.111 56.9-157.2 -48.7 171.2 -4.8 -1.3 -3.1 11 11 A Q S S+ 0 0 138 25,-0.7 26,-0.1 24,-0.5 -1,-0.1 0.646 78.0 28.1-123.8 -39.0 -5.5 -4.7 -4.7 12 12 A N S S- 0 0 96 24,-0.7 25,-0.1 23,-0.3 24,-0.1 0.863 126.2 -54.0 -89.9 -89.0 -6.4 -7.1 -1.8 13 13 A D S S+ 0 0 156 23,-0.3 2,-0.1 13,-0.1 24,-0.1 -0.037 84.3 138.1-150.2 35.3 -7.9 -5.4 1.2 14 14 A A - 0 0 8 22,-0.3 13,-0.2 21,-0.2 -4,-0.1 -0.428 44.2-126.5 -84.2 160.9 -5.5 -2.7 2.2 15 15 A T B -A 26 0A 84 11,-1.4 11,-0.9 -2,-0.1 2,-0.3 -0.288 27.7 -92.4 -96.3-176.1 -6.4 0.8 3.3 16 16 A a + 0 0 27 9,-0.2 2,-0.1 -11,-0.1 9,-0.1 -0.693 34.6 174.2-100.6 153.6 -5.3 4.3 2.1 17 17 A L + 0 0 71 -2,-0.3 7,-1.8 -13,-0.1 2,-0.4 -0.577 19.6 138.4-161.2 89.7 -2.4 6.4 3.4 18 18 A D + 0 0 45 5,-0.2 5,-0.2 -2,-0.1 -14,-0.1 -1.000 13.8 163.7-139.7 138.8 -1.4 9.6 1.7 19 19 A Q S S- 0 0 154 -2,-0.4 -1,-0.1 3,-0.2 4,-0.1 0.733 78.1 -43.0-115.3 -60.0 -0.4 13.0 3.0 20 20 A I S S- 0 0 164 2,-0.0 3,-0.1 0, 0.0 -2,-0.0 0.463 127.1 -4.7-143.3 -45.5 1.3 15.0 0.2 21 21 A G S S+ 0 0 70 1,-0.1 2,-0.1 0, 0.0 -3,-0.1 -0.040 110.6 80.7-151.6 39.2 3.7 12.8 -1.7 22 22 A E + 0 0 155 2,-0.0 2,-0.4 0, 0.0 -3,-0.2 -0.574 50.6 177.2-150.0 79.8 3.8 9.4 -0.0 23 23 A F + 0 0 43 -5,-0.2 2,-0.3 -2,-0.1 -5,-0.2 -0.728 10.2 162.4 -89.5 130.9 1.0 7.1 -0.9 24 24 A Q - 0 0 86 -7,-1.8 2,-0.4 -2,-0.4 11,-0.1 -0.991 33.4-128.4-150.2 139.0 1.0 3.6 0.6 25 25 A b - 0 0 0 9,-0.4 2,-0.6 -2,-0.3 -9,-0.2 -0.726 22.5-134.2 -89.8 133.1 -1.5 0.8 1.1 26 26 A I B +A 15 0A 67 -11,-0.9 -11,-1.4 -2,-0.4 2,-0.2 -0.762 39.4 154.1 -89.9 122.4 -1.8 -0.6 4.6 27 27 A c - 0 0 41 -2,-0.6 9,-0.1 -13,-0.2 10,-0.0 -0.530 45.3 -61.2-129.7-164.4 -2.0 -4.5 4.7 28 28 A M > - 0 0 120 -2,-0.2 3,-2.8 1,-0.1 2,-1.0 -0.680 61.1 -92.2 -89.7 140.4 -1.2 -7.4 6.9 29 29 A P T 3 S+ 0 0 112 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 -0.245 119.4 38.8 -50.5 89.7 2.4 -8.1 8.2 30 30 A G T 3 S+ 0 0 68 -2,-1.0 2,-0.5 1,-0.4 0, 0.0 0.160 83.6 108.0 151.9 -20.1 3.4 -10.4 5.4 31 31 A Y < - 0 0 122 -3,-2.8 -1,-0.4 5,-0.0 -4,-0.1 -0.760 47.4-172.3 -89.6 122.6 1.9 -9.0 2.2 32 32 A E > + 0 0 148 -2,-0.5 5,-2.7 4,-0.1 6,-0.8 -0.351 28.8 87.9-102.5-174.9 4.5 -7.3 -0.1 33 33 A G T 5S- 0 0 39 3,-0.2 5,-0.1 4,-0.2 -2,-0.0 -0.689 83.9 -70.3 119.9-173.8 4.3 -5.3 -3.2 34 34 A V T 5S+ 0 0 119 -2,-0.2 -9,-0.4 1,-0.1 -1,-0.1 0.772 132.6 24.0 -89.8 -30.6 3.9 -1.6 -4.2 35 35 A Y T 5S- 0 0 86 -3,-0.2 -24,-0.5 -11,-0.1 -23,-0.3 0.003 122.7 -92.9-122.4 25.7 0.3 -1.3 -3.0 36 36 A c T 5S+ 0 0 10 -26,-0.1 -24,-0.7 -25,-0.1 -25,-0.7 0.963 87.0 116.5 60.4 90.2 0.3 -4.1 -0.4 37 37 A E < 0 0 54 -5,-2.7 -4,-0.2 -26,-0.1 -3,-0.1 0.088 360.0 360.0-177.0 42.9 -0.9 -7.2 -2.3 38 38 A I 0 0 115 -6,-0.8 -5,-0.1 -5,-0.1 -26,-0.0 -0.564 360.0 360.0-143.4 360.0 1.8 -9.9 -2.4