==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT(IRON) 26-AUG-91 8RXN . COMPND 2 MOLECULE: RUBREDOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: DESULFOVIBRIO VULGARIS; . AUTHOR Z.DAUTER,L.SIEKER,K.WILSON . 52 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3333.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 51.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 21.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 5.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 17.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 3 5.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 148 0, 0.0 15,-0.2 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 23.5 -2.0 -14.1 -2.7 2 2 A K - 0 0 129 12,-0.1 28,-0.4 13,-0.1 2,-0.2 -0.414 360.0-138.6 -63.6 123.6 -3.9 -10.8 -2.5 3 3 A K - 0 0 81 49,-0.4 49,-2.6 -2,-0.2 2,-0.3 -0.587 13.8-157.0 -90.6 149.1 -1.5 -8.2 -0.9 4 4 A Y E -AB 13 51A 47 9,-1.6 9,-3.2 47,-0.3 2,-0.4 -0.983 4.8-145.1-129.5 143.7 -2.7 -5.7 1.7 5 5 A V E -AB 12 50A 25 45,-2.9 45,-2.3 -2,-0.3 2,-0.4 -0.908 16.7-122.6-118.1 138.4 -1.1 -2.3 2.6 6 6 A C E > - B 0 49A 2 5,-3.1 4,-2.3 -2,-0.4 43,-0.2 -0.629 15.3-155.0 -73.6 119.7 -0.9 -0.6 6.0 7 7 A T T 4 S+ 0 0 81 41,-2.6 -1,-0.1 -2,-0.4 42,-0.1 0.450 91.4 56.1 -79.1 -0.0 -2.5 2.8 5.7 8 8 A V T 4 S- 0 0 89 40,-0.2 -1,-0.2 3,-0.1 41,-0.1 0.875 130.9 -0.4 -89.9 -57.6 -0.4 4.1 8.5 9 9 A C T 4 S- 0 0 55 2,-0.1 -2,-0.2 35,-0.0 -4,-0.0 0.554 90.4-112.8-117.8 -8.8 3.1 3.3 7.2 10 10 A G < + 0 0 44 -4,-2.3 -3,-0.1 1,-0.3 2,-0.0 0.408 57.7 152.3 89.7 -2.4 2.9 1.7 3.8 11 11 A Y - 0 0 51 -6,-0.1 -5,-3.1 1,-0.1 2,-0.5 -0.361 36.7-140.8 -60.7 143.1 4.2 -1.8 4.7 12 12 A E E -A 5 0A 88 -7,-0.2 2,-0.6 37,-0.0 -7,-0.2 -0.927 0.7-142.0-112.4 123.3 2.7 -4.4 2.4 13 13 A Y E -A 4 0A 0 -9,-3.2 -9,-1.6 -2,-0.5 17,-0.1 -0.801 20.3-166.7 -80.4 124.6 1.7 -7.8 3.8 14 14 A D >> - 0 0 41 -2,-0.6 4,-2.2 4,-0.4 3,-1.6 -0.952 14.3-155.2-118.1 108.8 2.6 -10.3 1.0 15 15 A P T 34 S+ 0 0 3 0, 0.0 12,-2.8 0, 0.0 13,-0.5 0.785 92.6 63.1 -56.5 -30.3 1.1 -13.8 1.6 16 16 A A T 34 S+ 0 0 53 -15,-0.2 13,-0.1 10,-0.2 12,-0.0 0.841 114.2 33.2 -65.3 -25.8 3.9 -15.4 -0.4 17 17 A E T <4 S- 0 0 130 -3,-1.6 -1,-0.2 9,-0.2 7,-0.1 0.764 89.3-171.5 -99.0 -26.9 6.4 -14.3 2.2 18 18 A G < - 0 0 5 -4,-2.2 -4,-0.4 10,-0.2 7,-0.2 -0.330 40.9 -84.7 66.8-150.6 4.2 -14.4 5.3 19 19 A D B > > -C 24 0B 18 5,-2.4 3,-2.1 -4,-0.1 5,-1.7 -0.491 44.7-177.4-157.6 76.7 5.8 -12.9 8.4 20 20 A P G > 5S+ 0 0 84 0, 0.0 3,-2.2 0, 0.0 5,-0.1 0.828 77.9 59.4 -50.9 -43.7 8.1 -15.6 10.0 21 21 A D G 3 5S+ 0 0 157 1,-0.3 4,-0.1 2,-0.1 -2,-0.0 0.649 108.4 46.7 -66.9 -13.4 9.2 -13.6 13.0 22 22 A N G < 5S- 0 0 87 -3,-2.1 -1,-0.3 2,-0.2 3,-0.1 0.044 126.7 -97.2-109.8 20.2 5.6 -13.3 14.1 23 23 A G T < 5S+ 0 0 69 -3,-2.2 2,-0.6 1,-0.2 -2,-0.1 0.748 82.9 129.5 75.9 24.9 4.7 -16.9 13.6 24 24 A V B < -C 19 0B 6 -5,-1.7 -5,-2.4 -7,-0.1 -1,-0.2 -0.920 46.5-147.8-118.4 106.7 3.2 -16.6 10.1 25 25 A K > - 0 0 153 -2,-0.6 3,-1.5 -7,-0.2 -7,-0.1 -0.362 33.9 -81.9 -73.6 155.7 4.6 -19.0 7.6 26 26 A P T 3 S+ 0 0 85 0, 0.0 -10,-0.2 0, 0.0 -9,-0.2 -0.188 114.9 36.0 -53.7 140.9 4.9 -18.3 3.9 27 27 A G T 3 S+ 0 0 45 -12,-2.8 2,-0.5 1,-0.3 -11,-0.2 0.393 78.6 136.5 95.9 -0.7 1.7 -18.7 2.1 28 28 A T < - 0 0 25 -3,-1.5 -1,-0.3 -13,-0.5 -10,-0.2 -0.674 51.1-129.5 -79.9 125.1 -0.7 -17.5 4.8 29 29 A S > - 0 0 41 -2,-0.5 3,-1.6 1,-0.1 4,-0.1 -0.278 19.9-114.0 -70.7 157.6 -3.4 -15.2 3.5 30 30 A F G > S+ 0 0 22 -28,-0.4 3,-1.6 1,-0.3 -1,-0.1 0.868 116.7 59.9 -58.2 -36.9 -4.1 -11.9 5.2 31 31 A D G 3 S+ 0 0 128 1,-0.3 -1,-0.3 0, 0.0 -3,-0.0 0.665 102.9 52.9 -67.0 -21.8 -7.4 -13.1 6.3 32 32 A D G < S+ 0 0 120 -3,-1.6 -1,-0.3 2,-0.0 -2,-0.2 0.158 78.2 124.6-100.0 15.1 -5.8 -15.9 8.2 33 33 A L S < S- 0 0 13 -3,-1.6 -9,-0.0 1,-0.1 -3,-0.0 -0.426 75.9 -87.2 -70.9 150.5 -3.4 -13.8 10.2 34 34 A P > - 0 0 54 0, 0.0 3,-2.1 0, 0.0 -1,-0.1 -0.155 37.0-114.7 -53.8 147.9 -3.6 -14.2 14.0 35 35 A A T 3 S+ 0 0 99 1,-0.3 11,-0.2 -3,-0.1 -2,-0.1 0.803 115.5 46.6 -59.0 -29.9 -6.2 -12.0 15.7 36 36 A D T 3 S+ 0 0 139 9,-0.1 -1,-0.3 2,-0.1 2,-0.1 0.260 82.2 124.6 -96.4 7.7 -3.5 -10.1 17.6 37 37 A W < - 0 0 9 -3,-2.1 9,-0.5 8,-0.0 2,-0.3 -0.492 37.5-176.0 -69.8 142.8 -1.1 -9.6 14.6 38 38 A V B -D 45 0C 67 7,-0.1 6,-0.1 -2,-0.1 -2,-0.1 -0.867 42.0 -70.3-131.3 165.8 -0.2 -6.0 13.9 39 39 A C > - 0 0 1 5,-2.8 4,-2.4 -2,-0.3 5,-0.0 -0.338 41.6-146.2 -56.8 127.6 1.9 -4.2 11.2 40 40 A P T 4 S+ 0 0 57 0, 0.0 -1,-0.2 0, 0.0 -21,-0.0 0.701 94.2 49.5 -73.5 -18.4 5.5 -5.3 11.9 41 41 A V T 4 S+ 0 0 104 3,-0.1 -2,-0.1 1,-0.0 0, 0.0 0.832 133.2 3.8 -86.7 -38.6 6.9 -1.9 10.8 42 42 A C T 4 S- 0 0 55 2,-0.1 -3,-0.1 -3,-0.0 -1,-0.0 0.546 89.1-115.1-126.6 -12.2 4.6 0.4 12.7 43 43 A G < + 0 0 44 -4,-2.4 0, 0.0 1,-0.2 0, 0.0 0.408 59.3 149.7 91.4 -2.1 2.3 -1.4 15.1 44 44 A A - 0 0 10 -6,-0.1 -5,-2.8 1,-0.1 -1,-0.2 -0.234 48.0-102.9 -67.7 153.3 -1.0 -0.4 13.4 45 45 A P B > -D 38 0C 55 0, 0.0 3,-2.0 0, 0.0 -7,-0.1 -0.320 22.4-113.6 -75.4 161.4 -4.0 -2.8 13.5 46 46 A K G > S+ 0 0 52 -9,-0.5 3,-1.9 1,-0.3 -8,-0.1 0.798 112.4 71.3 -61.9 -28.9 -5.2 -5.0 10.7 47 47 A S G 3 S+ 0 0 107 1,-0.3 -1,-0.3 3,-0.0 -3,-0.0 0.624 94.5 56.9 -62.7 -15.4 -8.4 -2.9 10.5 48 48 A E G < S+ 0 0 88 -3,-2.0 -41,-2.6 2,-0.0 2,-0.3 0.095 86.8 95.8-103.7 16.4 -6.2 -0.2 9.0 49 49 A F E < -B 6 0A 20 -3,-1.9 2,-0.3 -43,-0.2 -43,-0.2 -0.796 56.1-162.6 -98.9 152.6 -4.9 -2.2 6.1 50 50 A E E -B 5 0A 113 -45,-2.3 -45,-2.9 -2,-0.3 2,-0.1 -0.939 33.1 -88.9-131.4 155.8 -6.5 -2.0 2.7 51 51 A A E B 4 0A 56 -2,-0.3 -47,-0.3 -47,-0.2 -49,-0.0 -0.452 360.0 360.0 -63.0 136.9 -6.3 -4.3 -0.3 52 52 A A 0 0 78 -49,-2.6 -49,-0.4 -2,-0.1 -1,-0.1 -0.450 360.0 360.0-132.4 360.0 -3.4 -3.4 -2.6