==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 22-DEC-03 1RYG . COMPND 2 MOLECULE: HAINANTOXIN-IV; . SOURCE 2 SYNTHETIC: YES; . AUTHOR D.LI,S.LU,X.GU,S.LIANG . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3075.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 54.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 17.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 229 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 51.3 12.8 3.4 1.5 2 2 A a - 0 0 62 15,-0.1 2,-0.3 16,-0.0 14,-0.2 -0.964 360.0 -92.2-156.8 171.6 9.1 2.5 1.5 3 3 A L B -a 16 0A 55 12,-1.7 14,-2.3 -2,-0.3 3,-0.1 -0.684 38.3-124.6 -93.5 146.7 5.9 2.7 3.7 4 4 A G > - 0 0 32 -2,-0.3 3,-1.2 12,-0.2 2,-0.3 -0.032 48.8 -62.9 -75.5-173.1 4.9 -0.1 6.1 5 5 A F T 3 S+ 0 0 110 1,-0.2 -1,-0.2 11,-0.1 27,-0.1 -0.548 124.2 17.8 -75.8 134.9 1.5 -1.9 6.0 6 6 A G T 3 S+ 0 0 24 25,-1.7 2,-0.3 1,-0.3 -1,-0.2 0.357 88.3 140.9 88.2 -7.3 -1.5 0.4 6.8 7 7 A K < - 0 0 117 -3,-1.2 24,-0.8 23,-0.2 -1,-0.3 -0.510 62.3-108.6 -71.0 130.5 0.6 3.5 6.0 8 8 A G B +B 30 0B 56 22,-0.3 22,-0.3 -2,-0.3 2,-0.2 -0.372 58.2 150.1 -59.9 127.1 -1.5 6.2 4.2 9 9 A b - 0 0 15 20,-1.1 5,-0.1 16,-0.2 16,-0.0 -0.825 47.1 -82.7-145.7-175.2 -0.2 6.4 0.6 10 10 A N - 0 0 97 3,-0.6 14,-0.2 -2,-0.2 5,-0.1 -0.832 20.8-149.8-101.6 136.4 -1.4 7.1 -3.0 11 11 A P S > S+ 0 0 57 0, 0.0 3,-0.7 0, 0.0 13,-0.2 0.900 101.0 45.4 -69.0 -41.0 -3.2 4.5 -5.1 12 12 A S T 3 S+ 0 0 89 1,-0.3 2,-0.4 14,-0.0 14,-0.0 0.926 127.3 29.9 -69.4 -41.8 -1.9 5.9 -8.4 13 13 A N T 3 S- 0 0 118 2,-0.0 -3,-0.6 0, 0.0 -1,-0.3 -0.539 84.4-178.4-115.4 65.8 1.6 6.4 -7.0 14 14 A D < + 0 0 84 -3,-0.7 17,-0.0 -2,-0.4 -5,-0.0 -0.435 10.1 174.3 -66.6 132.9 1.9 3.5 -4.5 15 15 A Q + 0 0 136 -2,-0.2 -12,-1.7 -5,-0.1 -1,-0.1 -0.167 25.2 138.9-133.0 42.2 5.2 3.5 -2.6 16 16 A c B -a 3 0A 13 -14,-0.2 2,-0.6 6,-0.2 -12,-0.2 -0.304 68.3 -77.3 -81.3 170.6 4.8 0.7 -0.0 17 17 A a > > - 0 0 22 -14,-2.3 5,-1.1 1,-0.2 3,-0.8 -0.558 37.7-164.5 -72.0 113.4 7.5 -1.9 0.9 18 18 A K G > 5S+ 0 0 177 -2,-0.6 3,-1.8 1,-0.2 -1,-0.2 0.715 79.3 79.1 -71.5 -17.8 7.5 -4.5 -1.9 19 19 A S G 3 5S+ 0 0 121 1,-0.3 -1,-0.2 2,-0.1 -2,-0.1 0.885 102.8 35.3 -58.8 -36.1 9.5 -6.9 0.3 20 20 A S G < 5S- 0 0 59 -3,-0.8 -1,-0.3 2,-0.0 -2,-0.2 0.076 119.7-107.3-104.8 25.1 6.3 -7.8 2.1 21 21 A N T < 5 + 0 0 116 -3,-1.8 13,-0.8 1,-0.2 2,-0.5 0.969 59.6 168.6 50.4 61.6 4.0 -7.6 -1.0 22 22 A L E < -C 33 0C 12 -5,-1.1 2,-0.3 11,-0.1 -6,-0.2 -0.898 12.8-176.5-109.7 132.6 2.3 -4.3 0.1 23 23 A V E -C 32 0C 60 9,-1.9 9,-2.7 -2,-0.5 2,-0.3 -0.915 28.0-111.9-124.9 152.5 0.1 -2.3 -2.2 24 24 A b E -C 31 0C 19 -2,-0.3 7,-0.3 7,-0.3 2,-0.2 -0.611 30.5-139.4 -83.8 141.3 -1.7 1.1 -1.7 25 25 A S - 0 0 26 5,-3.5 -16,-0.2 -2,-0.3 -1,-0.0 -0.589 7.7-149.8 -96.6 161.3 -5.5 1.0 -1.6 26 26 A R S S+ 0 0 198 -2,-0.2 -1,-0.1 3,-0.1 -14,-0.0 0.639 92.2 55.5-103.3 -18.3 -7.9 3.6 -3.2 27 27 A K S S+ 0 0 158 1,-0.1 -1,-0.0 3,-0.1 -2,-0.0 0.941 126.3 18.0 -80.3 -49.4 -10.8 3.3 -0.7 28 28 A H S S- 0 0 151 2,-0.1 -1,-0.1 0, 0.0 -2,-0.1 0.477 96.8-131.6 -99.9 -2.9 -8.8 4.1 2.5 29 29 A A S S+ 0 0 49 1,-0.2 -20,-1.1 -21,-0.1 2,-0.2 0.913 71.3 104.4 54.6 43.3 -5.8 5.7 0.7 30 30 A W B S-B 8 0B 96 -22,-0.3 -5,-3.5 -7,-0.1 2,-0.8 -0.791 84.5 -71.3-140.0-177.0 -3.4 3.5 2.8 31 31 A c E -C 24 0C 0 -24,-0.8 -25,-1.7 -7,-0.3 -7,-0.3 -0.710 51.6-170.4 -85.5 112.8 -1.2 0.4 2.4 32 32 A K E -C 23 0C 106 -9,-2.7 -9,-1.9 -2,-0.8 2,-0.6 -0.681 20.3-123.9-100.1 156.2 -3.4 -2.7 2.1 33 33 A Y E -C 22 0C 98 -2,-0.2 2,-0.5 -11,-0.2 -11,-0.1 -0.866 18.3-139.5-102.6 122.8 -2.2 -6.3 2.2 34 34 A E 0 0 118 -13,-0.8 0, 0.0 -2,-0.6 0, 0.0 -0.679 360.0 360.0 -82.1 123.0 -3.1 -8.6 -0.7 35 35 A I 0 0 195 -2,-0.5 -2,-0.1 0, 0.0 -1,-0.0 -0.434 360.0 360.0 61.3 360.0 -4.1 -12.1 0.4