==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 22-DEC-03 1RYJ . COMPND 2 MOLECULE: UNKNOWN; . SOURCE 2 ORGANISM_SCIENTIFIC: METHANOTHERMOCOCCUS . AUTHOR A.YEE,X.CHANG,A.PINEDA-LUCENA,B.WU,A.SEMESI,B.LE,T.RAMELOT, . 70 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5353.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 53 75.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 4 5.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 19 27.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 16 22.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 4 A M 0 0 226 0, 0.0 2,-0.5 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -81.3 11.6 19.5 5.7 2 5 A V - 0 0 123 2,-0.1 2,-0.4 0, 0.0 0, 0.0 -0.957 360.0-143.3-109.3 121.3 13.2 16.6 3.9 3 6 A I + 0 0 120 -2,-0.5 2,-0.1 2,-0.0 19,-0.1 -0.701 49.8 110.9 -87.8 132.7 10.9 14.8 1.6 4 7 A G - 0 0 40 -2,-0.4 2,-0.5 2,-0.0 17,-0.3 -0.272 40.0-161.0 160.3 106.0 11.3 11.0 1.3 5 8 A M E -A 20 0A 3 15,-3.0 15,-3.1 -2,-0.1 2,-0.5 -0.881 1.4-166.2-110.5 130.5 9.0 8.3 2.6 6 9 A K E +A 19 0A 88 -2,-0.5 52,-2.5 13,-0.3 2,-0.3 -0.968 21.2 160.2-115.0 126.6 10.0 4.7 3.2 7 10 A F E -A 18 0A 6 11,-2.3 11,-2.0 -2,-0.5 2,-0.4 -0.867 31.1-126.4-138.8 167.9 7.2 2.2 3.7 8 11 A T E -Ab 17 60A 13 51,-1.6 53,-2.9 -2,-0.3 2,-0.6 -0.979 9.7-162.4-125.4 132.0 6.6 -1.5 3.5 9 12 A V E -Ab 16 61A 19 7,-2.3 7,-2.8 -2,-0.4 2,-0.5 -0.962 14.4-154.8-109.3 119.3 3.9 -3.4 1.6 10 13 A I E +Ab 15 62A 45 51,-2.2 53,-1.6 -2,-0.6 5,-0.3 -0.823 30.1 139.3-100.3 129.0 3.3 -6.9 2.8 11 14 A T E > S-A 14 0A 28 3,-2.2 3,-1.8 -2,-0.5 53,-0.1 -0.677 72.6 -63.1-141.3-162.8 1.9 -9.5 0.4 12 15 A D T 3 S+ 0 0 116 1,-0.3 3,-0.1 -2,-0.2 52,-0.0 0.793 133.9 60.5 -61.0 -27.4 2.5 -13.2 -0.5 13 16 A D T 3 S- 0 0 117 1,-0.3 -1,-0.3 3,-0.0 2,-0.2 0.578 116.7-122.0 -74.5 -9.4 5.9 -12.1 -1.5 14 17 A G E < -A 11 0A 28 -3,-1.8 -3,-2.2 2,-0.1 2,-0.6 -0.640 60.1 -13.1 100.3-163.8 6.4 -11.0 2.1 15 18 A K E -A 10 0A 159 -5,-0.3 2,-0.6 -2,-0.2 -5,-0.3 -0.674 65.8-157.8 -76.8 118.8 7.3 -7.5 3.3 16 19 A K E -A 9 0A 85 -7,-2.8 -7,-2.3 -2,-0.6 2,-0.6 -0.883 3.1-152.5-102.5 121.8 8.4 -5.4 0.4 17 20 A I E +A 8 0A 117 -2,-0.6 2,-0.3 -9,-0.2 -9,-0.2 -0.849 26.8 153.8-100.3 120.8 10.5 -2.4 1.3 18 21 A L E -A 7 0A 63 -11,-2.0 -11,-2.3 -2,-0.6 2,-0.4 -0.996 24.4-155.7-144.3 141.3 10.4 0.6 -1.0 19 22 A E E -A 6 0A 136 -2,-0.3 2,-0.4 -13,-0.2 -13,-0.3 -0.958 5.0-159.1-121.5 139.0 11.0 4.3 -0.5 20 23 A S E -A 5 0A 42 -15,-3.1 -15,-3.0 -2,-0.4 4,-0.1 -0.958 16.0-145.1-119.9 130.9 9.7 7.2 -2.6 21 24 A G S S+ 0 0 52 -2,-0.4 -1,-0.1 -17,-0.3 -15,-0.1 0.812 90.4 56.0 -63.4 -32.0 11.2 10.7 -2.6 22 25 A A S S- 0 0 49 -18,-0.1 2,-0.6 -17,-0.1 -1,-0.1 -0.913 90.6-123.3-106.8 123.8 7.8 12.3 -3.0 23 26 A P + 0 0 79 0, 0.0 2,-0.2 0, 0.0 33,-0.1 -0.528 47.4 175.9 -63.7 110.9 5.1 11.6 -0.4 24 27 A R - 0 0 122 -2,-0.6 31,-3.3 1,-0.1 2,-0.2 -0.540 30.0 -93.4-118.6 177.1 2.3 10.2 -2.5 25 28 A R B >> -E 54 0B 78 29,-0.3 4,-1.3 -2,-0.2 3,-0.9 -0.516 36.0-111.0 -89.9 157.6 -1.2 8.8 -2.2 26 29 A I H 3> S+ 0 0 7 27,-3.6 4,-2.9 1,-0.3 5,-0.3 0.925 119.0 56.4 -50.2 -47.4 -2.0 5.0 -2.0 27 30 A K H 3> S+ 0 0 98 24,-1.5 4,-2.4 26,-0.4 -1,-0.3 0.771 101.3 58.7 -59.6 -29.6 -3.6 5.3 -5.5 28 31 A D H <> S+ 0 0 34 -3,-0.9 4,-2.2 2,-0.2 -1,-0.2 0.993 115.2 30.9 -64.9 -61.8 -0.4 6.6 -6.9 29 32 A V H X S+ 0 0 30 -4,-1.3 4,-1.9 1,-0.2 5,-0.2 0.890 122.0 52.5 -64.8 -39.0 1.9 3.7 -6.0 30 33 A L H <>S+ 0 0 21 -4,-2.9 5,-2.0 -5,-0.3 4,-0.4 0.891 112.1 45.9 -63.2 -41.2 -1.0 1.3 -6.4 31 34 A G H <5S+ 0 0 40 -4,-2.4 -2,-0.2 -5,-0.3 -1,-0.2 0.834 107.7 56.4 -71.2 -35.2 -1.8 2.6 -9.8 32 35 A E H <5S+ 0 0 168 -4,-2.2 -2,-0.2 1,-0.2 -1,-0.2 0.905 120.4 30.3 -65.1 -42.1 1.8 2.6 -11.0 33 36 A L T <5S- 0 0 117 -4,-1.9 -1,-0.2 -5,-0.2 -2,-0.2 0.548 107.3-139.8 -86.1 -8.4 2.1 -1.1 -10.2 34 37 A E T 5 - 0 0 156 -4,-0.4 -3,-0.2 -5,-0.2 -4,-0.1 0.958 26.5-175.9 40.3 70.1 -1.6 -1.3 -11.0 35 38 A I < - 0 0 53 -5,-2.0 2,-0.6 -6,-0.1 -1,-0.2 -0.860 31.2-118.6 -92.6 112.6 -2.5 -3.7 -8.2 36 39 A P >> - 0 0 72 0, 0.0 3,-1.7 0, 0.0 4,-1.1 -0.335 25.6-171.4 -60.3 103.4 -6.2 -4.5 -8.7 37 40 A I T 34 S+ 0 0 74 -2,-0.6 5,-0.1 1,-0.3 -2,-0.0 0.617 80.6 80.3 -65.3 -11.3 -8.0 -3.3 -5.6 38 41 A E T 34 S+ 0 0 180 1,-0.2 -1,-0.3 3,-0.1 3,-0.0 0.750 109.3 18.2 -66.4 -26.7 -10.9 -5.2 -7.2 39 42 A T T <4 S+ 0 0 65 -3,-1.7 27,-1.1 31,-0.0 2,-0.3 0.454 118.4 68.5-125.7 -7.8 -9.5 -8.5 -5.9 40 43 A V E < S-C 65 0A 12 -4,-1.1 2,-0.5 25,-0.2 25,-0.3 -0.880 71.6-128.6-121.2 149.5 -7.1 -7.5 -3.1 41 44 A V E -C 64 0A 58 23,-2.2 23,-2.6 -2,-0.3 2,-0.5 -0.829 18.3-148.5 -98.9 130.8 -7.7 -6.0 0.3 42 45 A V E -C 63 0A 5 -2,-0.5 7,-1.8 7,-0.4 2,-0.4 -0.863 18.3-179.7-103.0 126.7 -5.8 -2.9 1.3 43 46 A K E -CD 62 48A 51 19,-1.4 19,-2.9 -2,-0.5 2,-0.7 -0.963 22.9-149.1-125.9 140.6 -4.9 -2.4 5.0 44 47 A K E > S-CD 61 47A 27 3,-3.4 3,-2.2 -2,-0.4 17,-0.2 -0.918 86.9 -36.3-106.5 102.1 -3.0 0.3 6.8 45 48 A N T 3 S- 0 0 120 15,-2.5 16,-0.1 -2,-0.7 -1,-0.1 0.634 130.4 -39.4 60.3 14.9 -1.2 -1.2 9.8 46 49 A G T 3 S+ 0 0 20 1,-0.4 2,-0.3 14,-0.3 -1,-0.3 -0.029 115.9 109.3 126.9 -30.3 -4.3 -3.5 10.1 47 50 A Q E < S-D 44 0A 143 -3,-2.2 -3,-3.4 1,-0.1 2,-0.5 -0.625 72.1-118.6 -86.6 134.2 -7.2 -1.1 9.3 48 51 A I E +D 43 0A 112 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.3 -0.577 44.0 173.5 -75.2 119.0 -9.0 -1.5 6.0 49 52 A V - 0 0 31 -7,-1.8 -7,-0.4 -2,-0.5 2,-0.2 -0.764 27.3-119.1-122.3 166.8 -8.5 1.6 3.9 50 53 A I > - 0 0 102 -2,-0.3 3,-1.2 -9,-0.1 -24,-0.1 -0.509 36.5-100.8 -97.8 175.4 -9.4 2.8 0.4 51 54 A D T 3 S+ 0 0 33 1,-0.3 -24,-1.5 -2,-0.2 -23,-0.1 0.296 109.8 79.7 -81.9 12.8 -6.9 3.9 -2.3 52 55 A E T 3 S+ 0 0 100 -26,-0.2 -1,-0.3 -25,-0.1 2,-0.0 0.636 73.3 94.0 -93.4 -15.8 -7.8 7.5 -1.5 53 56 A E S < S- 0 0 84 -3,-1.2 -27,-3.6 -28,-0.1 -26,-0.4 -0.305 75.6-115.2 -77.3 160.7 -5.5 7.7 1.6 54 57 A E B -E 25 0B 97 -29,-0.3 2,-0.3 -28,-0.1 -29,-0.3 -0.510 19.8-120.1 -94.2 163.2 -1.9 8.9 1.5 55 58 A I - 0 0 5 -31,-3.3 2,-0.3 -2,-0.2 -48,-0.0 -0.812 28.8-164.3-102.2 144.4 1.3 7.1 2.2 56 59 A F > - 0 0 115 -2,-0.3 3,-2.1 -33,-0.1 2,-0.6 -0.899 32.4 -92.2-129.4 155.6 3.7 8.1 5.0 57 60 A D T 3 S+ 0 0 105 -2,-0.3 -50,-0.2 1,-0.3 3,-0.1 -0.559 118.9 19.0 -66.6 111.1 7.3 7.4 6.0 58 61 A G T 3 S+ 0 0 58 -52,-2.5 -1,-0.3 -2,-0.6 2,-0.3 0.533 93.9 139.5 101.6 10.0 7.0 4.5 8.3 59 62 A D < - 0 0 26 -3,-2.1 -51,-1.6 -53,-0.3 2,-0.6 -0.629 44.5-141.3 -88.4 146.3 3.5 3.4 7.2 60 63 A I E -b 8 0A 42 -2,-0.3 -15,-2.5 -53,-0.2 2,-0.7 -0.933 10.5-164.8-114.0 115.9 2.7 -0.2 6.7 61 64 A I E -bC 9 44A 9 -53,-2.9 -51,-2.2 -2,-0.6 2,-1.0 -0.877 3.1-164.2-102.0 110.3 0.5 -1.3 3.8 62 65 A E E -bC 10 43A 55 -19,-2.9 -19,-1.4 -2,-0.7 2,-1.0 -0.809 4.6-171.2 -97.0 98.1 -0.9 -4.8 4.2 63 66 A V E + C 0 42A 6 -53,-1.6 2,-0.8 -2,-1.0 -21,-0.2 -0.794 7.7 179.9 -92.2 101.5 -2.1 -5.9 0.8 64 67 A I E - C 0 41A 84 -23,-2.6 -23,-2.2 -2,-1.0 2,-0.3 -0.866 12.1-161.2-109.3 100.0 -4.0 -9.1 1.4 65 68 A R E - C 0 40A 138 -2,-0.8 -25,-0.2 -25,-0.3 2,-0.2 -0.667 29.2-115.2 -77.1 135.3 -5.5 -10.7 -1.7 66 69 A V > - 0 0 84 -27,-1.1 3,-1.1 -2,-0.3 2,-0.2 -0.475 19.2-120.4 -83.1 140.5 -8.1 -13.1 -0.7 67 70 A I T 3 S+ 0 0 156 1,-0.3 3,-0.1 -2,-0.2 -1,-0.1 -0.569 99.9 13.9 -77.3 138.1 -7.9 -16.9 -1.4 68 71 A Y T 3 S+ 0 0 226 -2,-0.2 2,-1.1 1,-0.2 -1,-0.3 0.798 88.7 146.8 63.8 29.7 -10.6 -18.3 -3.6 69 72 A G < 0 0 36 -3,-1.1 -1,-0.2 1,-0.2 -3,-0.1 -0.592 360.0 360.0 -97.7 72.9 -11.5 -14.7 -4.4 70 73 A G 0 0 144 -2,-1.1 -1,-0.2 -3,-0.1 -2,-0.1 -0.028 360.0 360.0 161.8 360.0 -12.6 -15.0 -8.0