==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 22-DEC-03 1RYV . COMPND 2 MOLECULE: HAINANTOXIN-IV; . SOURCE 2 SYNTHETIC: YES; . AUTHOR D.LI,S.LU,X.GU,S.LIANG . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2939.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 37.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 14.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 204 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 125.8 11.1 5.7 -2.7 2 2 A a - 0 0 47 15,-0.0 2,-0.5 16,-0.0 14,-0.2 -0.653 360.0-110.4-118.7 177.4 8.3 3.4 -1.4 3 3 A L B -a 16 0A 24 12,-1.8 14,-2.8 -2,-0.2 3,-0.1 -0.931 26.6-139.0-113.9 129.2 5.9 3.4 1.6 4 4 A G > - 0 0 39 -2,-0.5 3,-1.3 12,-0.2 27,-0.3 -0.117 48.1 -62.8 -73.8 178.9 6.3 0.8 4.4 5 5 A F T 3 S+ 0 0 105 1,-0.2 -1,-0.2 25,-0.1 27,-0.1 -0.448 126.4 28.0 -65.5 127.8 3.3 -0.9 6.1 6 6 A G T 3 S+ 0 0 41 25,-1.1 -1,-0.2 1,-0.4 2,-0.1 -0.112 88.4 119.0 112.4 -36.6 1.1 1.8 7.8 7 7 A K < - 0 0 118 -3,-1.3 24,-2.4 23,-0.1 -1,-0.4 -0.375 62.8-128.7 -64.0 138.0 2.0 4.7 5.5 8 8 A G B +B 30 0B 55 22,-0.3 22,-0.3 -3,-0.1 2,-0.3 -0.662 37.3 160.7 -89.4 143.8 -1.1 6.1 3.6 9 9 A b - 0 0 12 20,-1.0 5,-0.1 -2,-0.3 0, 0.0 -0.888 43.0 -73.1-149.0 179.7 -0.9 6.6 -0.2 10 10 A N - 0 0 96 3,-0.4 5,-0.3 -2,-0.3 14,-0.2 -0.627 28.3-144.6 -84.1 140.6 -3.1 7.0 -3.3 11 11 A P S > S+ 0 0 36 0, 0.0 3,-0.7 0, 0.0 -1,-0.1 0.865 99.8 57.3 -71.0 -37.1 -5.1 4.0 -4.5 12 12 A S T 3 S+ 0 0 113 1,-0.3 2,-0.3 2,-0.0 -2,-0.0 0.861 120.8 29.8 -63.6 -31.7 -4.7 5.0 -8.2 13 13 A N T 3 S- 0 0 101 -3,-0.0 -3,-0.4 0, 0.0 2,-0.3 -0.645 83.9-156.1-128.3 76.0 -0.9 5.0 -7.7 14 14 A D < + 0 0 83 -3,-0.7 8,-0.0 -2,-0.3 -2,-0.0 -0.318 15.7 177.3 -54.0 109.8 -0.1 2.4 -5.0 15 15 A Q + 0 0 102 -2,-0.3 -12,-1.8 -5,-0.3 -1,-0.2 0.223 33.3 127.7-102.1 15.5 3.3 3.6 -3.7 16 16 A c B S-a 3 0A 11 -14,-0.2 -12,-0.2 6,-0.1 2,-0.1 -0.406 72.1 -95.8 -71.3 148.3 3.7 0.9 -1.0 17 17 A a > - 0 0 35 -14,-2.8 5,-1.2 1,-0.1 3,-0.4 -0.407 24.4-150.6 -65.0 134.4 7.0 -1.1 -1.0 18 18 A K T > 5S+ 0 0 186 1,-0.2 3,-1.1 3,-0.2 -1,-0.1 0.519 81.1 88.6 -84.4 -3.0 6.6 -4.4 -2.9 19 19 A S T 3 5S+ 0 0 120 1,-0.3 -1,-0.2 2,-0.1 -2,-0.0 0.932 102.5 27.5 -61.0 -42.8 9.3 -6.0 -0.7 20 20 A S T 3 5S- 0 0 54 -3,-0.4 -1,-0.3 2,-0.0 -2,-0.1 0.099 117.4-108.8-105.2 23.6 6.6 -7.1 1.9 21 21 A N T < 5 + 0 0 80 -3,-1.1 2,-0.4 1,-0.2 13,-0.4 0.973 58.9 167.2 50.0 66.4 3.8 -7.3 -0.7 22 22 A L < - 0 0 10 -5,-1.2 2,-0.3 11,-0.1 11,-0.2 -0.910 14.9-174.4-114.6 139.3 1.9 -4.2 0.5 23 23 A V E -C 32 0C 64 9,-2.4 9,-2.4 -2,-0.4 2,-0.5 -0.940 32.5-104.5-129.7 152.7 -0.9 -2.4 -1.4 24 24 A b E -C 31 0C 9 -2,-0.3 7,-0.2 7,-0.2 -10,-0.1 -0.630 38.5-132.2 -78.5 120.6 -2.9 0.8 -0.7 25 25 A S - 0 0 16 5,-2.3 -16,-0.1 -2,-0.5 -1,-0.1 -0.179 4.1-136.3 -64.9 163.9 -6.4 -0.0 0.6 26 26 A R S S+ 0 0 216 3,-0.1 -1,-0.1 2,-0.1 -2,-0.0 0.835 101.4 34.3 -92.6 -36.9 -9.4 1.8 -1.0 27 27 A A S S+ 0 0 94 1,-0.1 -1,-0.0 3,-0.1 -2,-0.0 0.858 134.0 28.1 -86.0 -37.0 -11.3 2.6 2.3 28 28 A H S S- 0 0 143 2,-0.1 -2,-0.1 -20,-0.0 3,-0.1 0.722 90.7-146.6 -95.3 -24.0 -8.3 3.2 4.5 29 29 A R + 0 0 136 1,-0.2 -20,-1.0 -21,-0.1 2,-0.3 0.970 56.6 113.8 57.5 54.7 -5.9 4.4 1.7 30 30 A W B S-B 8 0B 76 -22,-0.3 -5,-2.3 -7,-0.2 2,-0.4 -0.971 77.9 -79.8-149.3 164.0 -2.8 2.8 3.4 31 31 A c E +C 24 0C 0 -24,-2.4 -25,-1.1 -27,-0.3 2,-0.3 -0.517 59.7 163.1 -69.5 120.0 -0.2 0.1 2.8 32 32 A K E -C 23 0C 55 -9,-2.4 -9,-2.4 -2,-0.4 3,-0.1 -0.888 36.2-105.0-134.1 165.9 -1.8 -3.3 3.8 33 33 A Y - 0 0 111 -2,-0.3 2,-0.1 -11,-0.2 -11,-0.1 -0.320 50.4 -79.3 -85.0 173.2 -1.0 -7.0 3.3 34 34 A E 0 0 150 -13,-0.4 -1,-0.1 1,-0.1 -12,-0.0 -0.458 360.0 360.0 -73.0 143.8 -3.0 -9.3 0.9 35 35 A I 0 0 197 -2,-0.1 -1,-0.1 -3,-0.1 -2,-0.0 0.666 360.0 360.0 -83.1 360.0 -6.3 -10.6 2.2