==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 28-DEC-03 1RZS . COMPND 2 MOLECULE: REGULATORY PROTEIN CRO; . SOURCE 2 ORGANISM_SCIENTIFIC: ENTEROBACTERIA PHAGE P22; . AUTHOR T.NEWLOVE,J.H.KONIECZKA,M.H.CORDES . 61 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4568.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 41 67.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 6.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 14.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 37.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 26 0, 0.0 33,-1.7 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 113.7 -4.2 7.2 -0.1 2 2 A Y B >> -A 33 0A 94 31,-0.2 4,-1.8 1,-0.1 3,-1.2 -0.648 360.0-135.2 -86.1 138.6 -5.5 5.8 -3.4 3 3 A K H 3> S+ 0 0 52 29,-0.6 4,-2.6 28,-0.6 5,-0.3 0.821 105.3 65.5 -59.5 -31.4 -4.9 2.1 -4.2 4 4 A K H 3> S+ 0 0 139 28,-0.3 4,-0.6 1,-0.2 -1,-0.3 0.826 105.6 43.7 -60.7 -31.8 -3.9 3.2 -7.7 5 5 A D H <> S+ 0 0 72 -3,-1.2 4,-1.4 2,-0.2 -2,-0.2 0.908 111.6 51.7 -79.4 -45.6 -0.9 4.9 -6.1 6 6 A V H >X S+ 0 0 0 -4,-1.8 4,-2.3 1,-0.2 3,-0.8 0.938 109.2 49.8 -56.3 -51.4 0.0 2.2 -3.7 7 7 A I H 3X S+ 0 0 55 -4,-2.6 4,-2.6 1,-0.3 -1,-0.2 0.801 109.6 53.5 -59.0 -29.4 0.1 -0.5 -6.5 8 8 A D H 3< S+ 0 0 130 -4,-0.6 -1,-0.3 -5,-0.3 -2,-0.2 0.766 110.7 46.1 -76.6 -26.2 2.2 1.9 -8.5 9 9 A H H << S+ 0 0 89 -4,-1.4 -2,-0.2 -3,-0.8 -1,-0.2 0.785 123.8 33.3 -84.6 -30.8 4.7 2.1 -5.6 10 10 A F H < S- 0 0 42 -4,-2.3 2,-1.2 -5,-0.2 -2,-0.2 0.740 89.1-151.9 -94.7 -29.8 4.7 -1.6 -5.0 11 11 A G S < S+ 0 0 53 -4,-2.6 2,-0.4 -5,-0.3 -1,-0.1 -0.308 75.6 48.9 87.9 -52.6 4.3 -2.7 -8.6 12 12 A T S >> S- 0 0 90 -2,-1.2 3,-1.5 1,-0.1 4,-1.1 -0.975 76.9-135.1-125.2 135.4 2.6 -6.0 -7.6 13 13 A Q H >> S+ 0 0 85 -2,-0.4 4,-2.0 1,-0.3 3,-0.5 0.913 106.2 62.6 -50.2 -48.8 -0.3 -6.4 -5.2 14 14 A R H 3> S+ 0 0 197 1,-0.3 4,-1.3 2,-0.2 -1,-0.3 0.803 99.7 57.8 -48.0 -32.1 1.4 -9.4 -3.6 15 15 A A H <> S+ 0 0 31 -3,-1.5 4,-1.7 2,-0.2 3,-0.3 0.949 103.8 48.8 -65.4 -50.8 4.2 -7.0 -2.6 16 16 A V H S+ 0 0 4 -4,-2.0 5,-2.3 1,-0.2 4,-2.1 0.835 109.3 50.4 -60.0 -33.2 0.4 -7.6 1.3 18 18 A K H <5S+ 0 0 175 -4,-1.3 -1,-0.2 -3,-0.3 -2,-0.2 0.801 108.3 53.1 -75.0 -30.1 3.9 -8.6 2.2 19 19 A A H <5S+ 0 0 33 -4,-1.7 -2,-0.2 -3,-0.3 -1,-0.2 0.942 121.1 29.2 -70.2 -49.5 4.8 -5.2 3.4 20 20 A L H <5S- 0 0 36 -4,-2.3 -2,-0.2 -5,-0.1 -3,-0.2 0.822 114.6-112.2 -80.0 -33.6 1.8 -4.8 5.8 21 21 A G T <5S+ 0 0 62 -4,-2.1 -3,-0.2 -5,-0.4 2,-0.2 0.697 74.2 118.0 106.7 27.6 1.6 -8.6 6.4 22 22 A I < - 0 0 59 -5,-2.3 -1,-0.3 -6,-0.2 2,-0.1 -0.565 64.9 -88.3-115.4-179.5 -1.7 -9.4 4.8 23 23 A S > - 0 0 82 -2,-0.2 4,-1.1 1,-0.1 3,-0.3 -0.456 33.6-113.1 -88.1 163.0 -2.8 -11.6 1.9 24 24 A D H > S+ 0 0 78 1,-0.2 4,-2.1 2,-0.2 5,-0.2 0.828 115.3 62.5 -63.1 -32.2 -3.0 -10.6 -1.8 25 25 A A H > S+ 0 0 47 1,-0.2 4,-2.5 2,-0.2 -1,-0.2 0.906 98.6 54.3 -60.1 -43.5 -6.8 -10.9 -1.6 26 26 A A H > S+ 0 0 37 -3,-0.3 4,-0.7 1,-0.2 -1,-0.2 0.874 107.7 51.4 -58.9 -38.8 -7.0 -8.2 1.0 27 27 A V H >< S+ 0 0 0 -4,-1.1 3,-1.1 1,-0.2 -2,-0.2 0.955 112.8 42.7 -63.9 -52.1 -5.1 -5.8 -1.3 28 28 A S H 3< S+ 0 0 59 -4,-2.1 -2,-0.2 1,-0.3 -1,-0.2 0.839 107.2 62.7 -63.6 -33.5 -7.3 -6.4 -4.3 29 29 A Q H 3< S+ 0 0 151 -4,-2.5 -1,-0.3 -5,-0.2 -2,-0.2 0.727 85.0 105.8 -64.3 -21.3 -10.4 -6.2 -2.1 30 30 A W << - 0 0 21 -3,-1.1 2,-0.2 -4,-0.7 4,-0.1 -0.001 60.3-146.8 -54.2 166.0 -9.3 -2.6 -1.3 31 31 A K - 0 0 166 2,-0.5 -28,-0.6 0, 0.0 -1,-0.1 -0.422 47.0 -56.4-121.4-163.6 -11.2 0.3 -2.9 32 32 A E S S+ 0 0 133 1,-0.2 -29,-0.6 -2,-0.2 2,-0.4 0.787 132.6 40.1 -49.3 -28.2 -10.5 3.8 -4.1 33 33 A V B S-A 2 0A 49 -31,-0.2 -2,-0.5 -30,-0.1 -31,-0.2 -0.966 91.0-128.1-129.7 116.7 -9.1 4.4 -0.7 34 34 A I - 0 0 2 -33,-1.7 5,-0.1 -2,-0.4 -7,-0.1 -0.129 45.5 -77.4 -56.8 155.1 -7.1 1.8 1.2 35 35 A P > - 0 0 48 0, 0.0 4,-2.5 0, 0.0 5,-0.2 0.003 37.8-115.5 -50.8 159.6 -8.1 0.9 4.7 36 36 A E H > S+ 0 0 118 1,-0.2 4,-0.7 2,-0.2 -2,-0.1 0.847 118.3 42.6 -67.8 -35.0 -7.3 3.2 7.6 37 37 A K H > S+ 0 0 103 2,-0.2 4,-1.3 1,-0.1 -1,-0.2 0.729 115.0 50.6 -83.2 -23.8 -4.9 0.6 9.2 38 38 A D H > S+ 0 0 26 2,-0.2 4,-1.8 1,-0.2 -2,-0.2 0.894 107.3 51.5 -79.8 -42.2 -3.4 -0.4 5.8 39 39 A A H X S+ 0 0 0 -4,-2.5 4,-0.8 2,-0.2 -1,-0.2 0.783 108.0 57.5 -64.4 -27.0 -2.6 3.2 4.8 40 40 A Y H >< S+ 0 0 121 -4,-0.7 3,-1.7 2,-0.2 4,-0.5 0.998 110.9 35.6 -66.5 -69.1 -0.9 3.6 8.1 41 41 A R H >X S+ 0 0 108 -4,-1.3 4,-2.2 1,-0.3 3,-1.4 0.793 108.9 69.9 -56.3 -28.6 1.7 0.9 8.0 42 42 A L H 3X S+ 0 0 0 -4,-1.8 4,-1.9 1,-0.3 7,-0.3 0.834 90.9 59.3 -59.1 -33.3 2.0 1.6 4.3 43 43 A E H <<>S+ 0 0 63 -3,-1.7 5,-2.3 -4,-0.8 -1,-0.3 0.720 109.6 44.4 -68.7 -21.0 3.7 4.9 5.2 44 44 A I H X45S+ 0 0 114 -3,-1.4 3,-2.0 -4,-0.5 -2,-0.2 0.904 111.4 48.2 -88.4 -50.2 6.4 3.0 7.0 45 45 A V H 3<5S+ 0 0 61 -4,-2.2 -2,-0.2 1,-0.3 -3,-0.1 0.860 110.8 53.4 -58.7 -37.4 7.1 0.2 4.5 46 46 A T T 3<5S- 0 0 8 -4,-1.9 -1,-0.3 -5,-0.2 -2,-0.1 0.367 120.5-111.3 -80.0 5.6 7.3 2.8 1.7 47 47 A A T < 5S- 0 0 95 -3,-2.0 -3,-0.2 1,-0.2 -2,-0.1 0.845 76.6 -49.6 67.5 34.0 9.9 4.6 3.8 48 48 A G S S+ 0 0 122 -2,-0.9 3,-0.6 2,-0.1 -1,-0.2 0.924 92.2 20.6 -90.3 -62.0 -9.0 13.3 5.3 56 56 A A T 3 S+ 0 0 55 -3,-0.4 -2,-0.1 1,-0.2 -20,-0.1 0.522 121.7 63.2 -85.1 -7.5 -10.7 10.2 3.9 57 57 A Y T 3 S+ 0 0 23 -4,-0.4 2,-0.5 1,-0.1 -1,-0.2 -0.057 82.2 93.4-106.5 30.7 -10.2 8.3 7.2 58 58 A R < + 0 0 149 -3,-0.6 2,-0.3 1,-0.0 -1,-0.1 -0.876 36.1 146.3-128.6 99.5 -12.5 10.7 9.2 59 59 A Q + 0 0 194 -2,-0.5 -3,-0.0 1,-0.1 -4,-0.0 -0.686 30.8 106.6-135.0 81.6 -16.1 9.7 9.5 60 60 A A 0 0 70 -2,-0.3 -1,-0.1 0, 0.0 0, 0.0 -0.347 360.0 360.0-155.1 63.9 -17.6 10.7 12.9 61 61 A A 0 0 174 -3,-0.0 -2,-0.0 0, 0.0 -3,-0.0 0.538 360.0 360.0-138.0 360.0 -19.9 13.6 12.5