==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=18-MAR-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN FIBRIL 15-JUN-11 3SGM . COMPND 2 MOLECULE: ALPHA-CRYSTALLIN B CHAIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR A.LAGANOWSKY,M.R.SAWAYA,D.CASCIO,D.EISENBERG . 44 4 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4762.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 56.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 20 45.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 2 4.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 159 0, 0.0 22,-2.9 0, 0.0 2,-0.7 0.000 360.0 360.0 360.0 130.7 7.5 -3.9 -3.8 2 2 A X E +A 22 0A 125 20,-0.2 20,-0.2 21,-0.1 2,-0.2 -0.731 360.0 179.1 -75.6 108.8 5.5 -1.1 -2.1 3 3 A K E -A 21 0A 103 18,-3.2 18,-2.5 -2,-0.7 2,-0.4 -0.623 19.8-130.0-103.8 171.5 8.1 1.3 -0.7 4 4 A V E -A 20 0A 110 16,-0.2 2,-0.4 -2,-0.2 16,-0.2 -0.980 19.1-179.3-126.1 137.0 7.5 4.5 1.3 5 5 A L E +A 19 0A 118 14,-2.1 14,-2.6 -2,-0.4 2,-0.3 -0.991 26.8 146.1-131.7 126.4 9.1 7.9 0.7 6 6 A G E -A 18 0A 34 -2,-0.4 2,-0.3 12,-0.3 12,-0.3 -0.860 38.0-118.0-152.1 179.9 8.0 10.7 3.1 7 7 A D E -A 17 0A 119 10,-3.0 10,-2.1 -2,-0.3 2,-0.5 -0.851 20.4-127.9-125.6 157.8 8.8 13.8 5.1 8 8 A V E +A 16 0A 98 -2,-0.3 2,-0.3 8,-0.2 8,-0.2 -0.935 32.5 173.4-107.3 130.5 8.9 14.7 8.7 9 9 A I E -A 15 0A 67 6,-3.0 6,-3.2 -2,-0.5 2,-0.6 -0.914 32.1-117.4-130.2 160.4 7.0 17.7 9.9 10 10 A E E A 14 0A 161 -2,-0.3 4,-0.2 4,-0.2 -2,-0.0 -0.882 360.0 360.0 -98.0 127.6 6.1 19.3 13.2 11 11 A V 0 0 123 2,-2.7 0, 0.0 -2,-0.6 0, 0.0 -0.789 360.0 360.0-123.3 360.0 2.4 19.4 14.0 12 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 13 1 B K 0 0 159 0, 0.0 -2,-2.7 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 162.2 5.3 16.7 17.8 14 2 B X E -A 10 0A 128 -4,-0.2 2,-0.4 -6,-0.1 -4,-0.2 -0.668 360.0-180.0 -87.6 130.4 7.0 15.0 14.8 15 3 B K E -A 9 0A 103 -6,-3.2 -6,-3.0 -2,-0.4 2,-0.5 -0.972 20.6-134.4-130.0 147.8 4.7 13.5 12.2 16 4 B V E -A 8 0A 98 -2,-0.4 2,-0.4 -8,-0.2 -8,-0.2 -0.881 19.6-178.6-105.5 131.0 5.5 11.6 9.0 17 5 B L E +A 7 0A 90 -10,-2.1 -10,-3.0 -2,-0.5 2,-0.3 -0.998 25.4 128.1-125.7 132.3 3.6 12.4 5.8 18 6 B G E -A 6 0A 48 -2,-0.4 2,-0.3 -12,-0.3 -12,-0.3 -0.869 44.7 -96.5-163.1-169.9 4.4 10.5 2.7 19 7 B D E -A 5 0A 112 -14,-2.6 -14,-2.1 -2,-0.3 2,-0.5 -0.923 23.7-125.5-128.7 148.3 3.6 8.3 -0.4 20 8 B V E -A 4 0A 97 -2,-0.3 2,-0.4 -16,-0.2 -16,-0.2 -0.842 33.1-170.0 -87.5 132.5 3.6 4.7 -1.2 21 9 B I E -A 3 0A 73 -18,-2.5 -18,-3.2 -2,-0.5 2,-0.5 -0.990 22.7-126.1-127.1 133.6 5.7 4.1 -4.4 22 10 B E E A 2 0A 137 -2,-0.4 -20,-0.2 -20,-0.2 -18,-0.0 -0.680 360.0 360.0 -78.2 125.1 5.9 0.9 -6.4 23 11 B V 0 0 125 -22,-2.9 -1,-0.2 -2,-0.5 -21,-0.1 0.572 360.0 360.0-130.6 360.0 9.6 -0.1 -6.7 24 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 25 1 C K 0 0 160 0, 0.0 22,-2.7 0, 0.0 2,-0.6 0.000 360.0 360.0 360.0 168.2 -12.3 -24.4 -13.1 26 2 C X E -B 46 0B 127 20,-0.2 2,-0.3 18,-0.1 20,-0.2 -0.741 360.0-179.9 -89.1 118.1 -12.4 -20.7 -13.8 27 3 C K E -B 45 0B 104 18,-3.5 18,-3.1 -2,-0.6 2,-0.5 -0.843 18.5-137.9-116.9 151.2 -9.5 -18.7 -12.3 28 4 C V E -B 44 0B 94 -2,-0.3 2,-0.4 16,-0.2 16,-0.2 -0.942 16.9-177.4-112.9 130.0 -8.8 -15.0 -12.5 29 5 C L E +B 43 0B 97 14,-2.4 14,-3.1 -2,-0.5 2,-0.3 -0.968 26.1 129.5-116.9 142.2 -5.3 -13.5 -13.1 30 6 C G E -B 42 0B 49 -2,-0.4 2,-0.3 12,-0.3 12,-0.3 -0.961 45.6 -95.6-170.7-174.9 -4.9 -9.8 -13.1 31 7 C D E -B 41 0B 110 10,-2.9 10,-2.5 -2,-0.3 2,-0.4 -0.897 24.8-127.9-119.6 149.3 -3.3 -6.5 -12.1 32 8 C V E -B 40 0B 97 -2,-0.3 2,-0.4 8,-0.2 8,-0.2 -0.839 32.8-170.8 -89.0 134.6 -4.0 -3.9 -9.5 33 9 C I E -B 39 0B 72 6,-2.7 6,-3.3 -2,-0.4 2,-0.5 -0.962 21.5-124.6-127.8 145.6 -4.2 -0.5 -11.0 34 10 C E E B 38 0B 131 -2,-0.4 4,-0.2 4,-0.2 6,-0.0 -0.795 360.0 360.0 -91.9 124.7 -4.4 3.0 -9.4 35 11 C V 0 0 122 2,-2.7 -2,-0.0 -2,-0.5 0, 0.0 -0.849 360.0 360.0-114.9 360.0 -7.3 5.1 -10.6 36 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 37 1 D K 0 0 157 0, 0.0 -2,-2.7 0, 0.0 2,-0.6 0.000 360.0 360.0 360.0 139.2 -8.4 4.0 -5.5 38 2 D X E +B 34 0B 134 -4,-0.2 2,-0.3 -6,-0.1 -4,-0.2 -0.764 360.0 177.4 -80.6 118.0 -6.9 0.5 -6.1 39 3 D K E -B 33 0B 92 -6,-3.3 -6,-2.7 -2,-0.6 2,-0.4 -0.715 21.4-125.8-114.6 172.9 -8.9 -1.2 -8.9 40 4 D V E -B 32 0B 112 -2,-0.3 2,-0.4 -8,-0.2 -8,-0.2 -0.954 18.2-176.9-124.4 137.0 -8.4 -4.5 -10.6 41 5 D L E +B 31 0B 116 -10,-2.5 -10,-2.9 -2,-0.4 2,-0.2 -0.978 29.9 145.8-130.0 121.3 -8.1 -5.4 -14.3 42 6 D G E -B 30 0B 35 -2,-0.4 2,-0.3 -12,-0.3 -12,-0.3 -0.802 38.6-121.6-147.8-178.1 -7.9 -9.1 -15.1 43 7 D D E -B 29 0B 120 -14,-3.1 -14,-2.4 -2,-0.2 2,-0.5 -0.942 22.2-124.9-132.3 151.4 -8.6 -12.1 -17.2 44 8 D V E +B 28 0B 94 -2,-0.3 2,-0.3 -16,-0.2 -16,-0.2 -0.852 33.1 173.5 -97.4 132.4 -10.4 -15.4 -16.7 45 9 D I E -B 27 0B 78 -18,-3.1 -18,-3.5 -2,-0.5 2,-0.5 -0.915 30.7-117.4-128.7 157.8 -8.4 -18.6 -17.5 46 10 D E E B 26 0B 147 -2,-0.3 -20,-0.2 -20,-0.2 -2,-0.0 -0.829 360.0 360.0 -93.5 133.9 -9.2 -22.2 -17.0 47 11 D V 0 0 127 -22,-2.7 -2,-0.0 -2,-0.5 0, 0.0 -0.884 360.0 360.0-119.5 360.0 -7.0 -24.2 -14.6