==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 11-NOV-93 1SIS . COMPND 2 MOLECULE: SCORPION INSECTOTOXIN I5A; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS EUPEUS; . AUTHOR A.S.ARSENIEV,V.I.KONDAKOV,A.L.LOMIZE,V.N.MAIOROV,V.F.BYSTROV . 35 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2498.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 71.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 22.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 17.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 154 0, 0.0 31,-0.3 0, 0.0 29,-0.0 0.000 360.0 360.0 360.0 173.2 1.8 -0.2 -1.0 2 2 A a - 0 0 39 29,-2.5 30,-0.2 1,-0.4 28,-0.0 0.839 360.0 -56.3 -85.5 -48.6 4.5 2.4 -1.8 3 3 A M E S-A 31 0A 62 28,-1.8 28,-2.3 13,-0.0 -1,-0.4 -0.847 76.3 -53.8-167.7-164.9 3.4 2.5 -5.5 4 4 A P E -A 30 0A 53 0, 0.0 2,-0.4 0, 0.0 26,-0.3 -0.571 41.5-146.0 -85.3 160.7 3.0 -0.1 -8.4 5 5 A b - 0 0 4 24,-2.1 2,-0.4 -2,-0.2 8,-0.1 -0.988 11.2-172.7-123.8 135.6 5.7 -2.6 -9.6 6 6 A F > - 0 0 113 -2,-0.4 2,-1.2 3,-0.1 3,-0.9 -0.936 16.1-156.1-131.2 108.7 6.2 -3.6 -13.3 7 7 A T T 3 S+ 0 0 131 -2,-0.4 -2,-0.0 1,-0.2 -1,-0.0 -0.103 78.6 87.4 -73.2 39.4 8.7 -6.4 -14.1 8 8 A T T 3 S+ 0 0 121 -2,-1.2 -1,-0.2 1,-0.2 3,-0.0 0.809 79.0 55.8 -99.0 -48.7 9.0 -5.1 -17.7 9 9 A D X> - 0 0 68 -3,-0.9 4,-0.9 1,-0.1 3,-0.8 -0.718 69.4-142.5 -95.9 133.7 11.7 -2.4 -17.3 10 10 A P T 34 S+ 0 0 125 0, 0.0 4,-0.4 0, 0.0 -1,-0.1 0.776 109.5 44.7 -57.0 -24.1 15.3 -3.1 -15.9 11 11 A N T 3> S+ 0 0 68 2,-0.2 4,-1.9 1,-0.1 5,-0.1 0.467 92.7 78.1-107.0 -5.4 15.0 0.3 -14.2 12 12 A M H <> S+ 0 0 10 -3,-0.8 4,-2.7 2,-0.2 5,-0.3 0.959 92.4 54.5 -60.1 -48.8 11.4 -0.1 -12.9 13 13 A A H X S+ 0 0 46 -4,-0.9 4,-1.3 1,-0.3 -1,-0.2 0.874 108.6 48.7 -55.3 -37.5 12.8 -2.2 -10.1 14 14 A K H > S+ 0 0 142 -4,-0.4 4,-2.4 2,-0.2 -1,-0.3 0.894 109.4 52.6 -63.9 -44.2 15.1 0.7 -9.3 15 15 A K H X S+ 0 0 56 -4,-1.9 4,-1.9 2,-0.2 -2,-0.2 0.867 105.3 54.1 -60.5 -40.1 12.1 3.1 -9.4 16 16 A c H X S+ 0 0 0 -4,-2.7 4,-1.1 2,-0.2 -1,-0.2 0.838 108.8 50.6 -61.3 -35.5 10.2 0.8 -6.9 17 17 A R H ><>S+ 0 0 81 -4,-1.3 5,-1.4 -5,-0.3 3,-0.5 0.962 108.2 51.3 -61.2 -50.7 13.3 1.3 -4.7 18 18 A D H ><5S+ 0 0 122 -4,-2.4 3,-1.7 1,-0.2 -2,-0.2 0.812 100.4 63.4 -59.2 -34.2 13.2 5.1 -5.1 19 19 A a H 3<5S+ 0 0 42 -4,-1.9 -1,-0.2 1,-0.3 -2,-0.2 0.947 102.4 49.8 -53.6 -48.9 9.5 5.1 -4.1 20 20 A d T X<5S- 0 0 11 -4,-1.1 3,-1.1 -3,-0.5 -1,-0.3 0.087 134.0 -92.6 -78.9 24.5 10.5 3.8 -0.6 21 21 A G T < 5S- 0 0 64 -3,-1.7 -3,-0.2 1,-0.3 -2,-0.2 0.868 90.3 -40.2 71.7 34.7 13.1 6.6 -0.4 22 22 A G T 3 -B 30 0A 118 3,-2.3 3,-1.1 -2,-0.4 -22,-0.1 -0.744 55.9 -71.1-126.6 75.8 6.2 -8.0 -4.6 28 28 A G T 3 S- 0 0 41 -2,-0.5 -1,-0.1 1,-0.2 -21,-0.0 -0.505 115.6 -2.3 71.9-134.9 4.6 -8.9 -8.0 29 29 A P T 3 S+ 0 0 111 0, 0.0 -24,-2.1 0, 0.0 2,-0.4 0.585 128.0 68.7 -67.0 -9.8 2.3 -6.2 -9.5 30 30 A Q E < -AB 4 27A 83 -3,-1.1 -3,-2.3 -26,-0.3 2,-0.6 -0.865 69.7-145.0-112.7 147.0 2.8 -4.0 -6.4 31 31 A c E -AB 3 26A 0 -28,-2.3 -29,-2.5 -2,-0.4 -28,-1.8 -0.943 25.2-173.2 -98.4 122.3 5.9 -2.1 -5.1 32 32 A L E - B 0 25A 54 -7,-2.0 -7,-2.8 -2,-0.6 -12,-0.2 -0.816 16.6-125.7-112.8 157.9 5.8 -2.1 -1.2 33 33 A d E - B 0 24A 25 2,-0.4 2,-1.3 -2,-0.3 -9,-0.2 -0.477 28.7-103.3 -92.6 167.9 8.2 -0.2 1.1 34 34 A N 0 0 86 -11,-0.8 -10,-0.1 -14,-0.2 -1,-0.1 -0.385 360.0 360.0 -81.2 57.1 10.5 -1.4 3.9 35 35 A R 0 0 229 -2,-1.3 -2,-0.4 0, 0.0 -15,-0.0 -0.958 360.0 360.0-168.9 360.0 7.8 0.0 6.3