==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 09-MAR-04 1SMM . COMPND 2 MOLECULE: RUBREDOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: CLOSTRIDIUM PASTEURIANUM; . AUTHOR I.Y.PARK,B.YOUN,J.L.HARLEY,M.K.EIDSNESS,E.SMITH,T.ICHIYE, . 54 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3601.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30 55.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 20.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 9.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 7.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 129 0, 0.0 2,-0.2 0, 0.0 15,-0.1 0.000 360.0 360.0 360.0 164.8 -12.1 27.4 11.2 2 2 A K - 0 0 72 13,-0.1 28,-0.4 12,-0.1 2,-0.2 -0.544 360.0-121.3 -90.6 156.1 -15.3 27.4 9.1 3 3 A K - 0 0 88 49,-0.4 49,-2.9 -2,-0.2 2,-0.3 -0.537 25.3-154.2 -85.0 157.6 -15.9 26.2 5.6 4 4 A Y E -AB 13 51A 46 9,-1.9 9,-3.5 47,-0.3 2,-0.4 -0.979 4.7-149.9-132.0 143.6 -17.3 28.7 3.1 5 5 A T E -AB 12 50A 23 45,-2.8 45,-2.1 -2,-0.3 2,-0.6 -0.929 18.5-119.9-122.2 147.4 -19.2 27.9 -0.0 6 6 A C E > - B 0 49A 1 5,-3.0 4,-2.2 -2,-0.4 43,-0.2 -0.687 19.6-155.8 -79.9 119.1 -19.5 29.6 -3.4 7 7 A T T 4 S+ 0 0 73 41,-2.6 -1,-0.1 -2,-0.6 42,-0.1 0.537 89.0 57.0 -76.7 -3.0 -23.1 30.6 -3.8 8 8 A V T 4 S+ 0 0 82 40,-0.2 -1,-0.2 3,-0.1 41,-0.1 0.879 128.3 5.3 -93.6 -43.6 -22.8 30.6 -7.5 9 9 A C T 4 S- 0 0 60 2,-0.1 -2,-0.2 0, 0.0 -4,-0.0 0.657 93.8-112.1-115.9 -15.5 -21.6 27.0 -8.1 10 10 A G < + 0 0 41 -4,-2.2 -3,-0.1 1,-0.3 0, 0.0 0.299 58.8 152.7 101.5 -7.8 -21.6 25.1 -4.8 11 11 A Y - 0 0 55 -6,-0.1 -5,-3.0 1,-0.1 2,-0.5 -0.226 34.6-143.3 -56.5 144.6 -17.8 24.7 -4.4 12 12 A I E -A 5 0A 92 -7,-0.2 2,-0.6 37,-0.1 -7,-0.2 -0.950 3.8-149.0-116.9 127.3 -16.8 24.5 -0.8 13 13 A Y E -A 4 0A 0 -9,-3.5 -9,-1.9 -2,-0.5 17,-0.1 -0.824 15.0-165.9 -93.0 123.7 -13.6 26.1 0.6 14 14 A N >> - 0 0 42 -2,-0.6 4,-2.0 4,-0.4 3,-1.6 -0.961 14.6-150.0-113.8 115.2 -12.3 23.9 3.5 15 15 A P T 34 S+ 0 0 4 0, 0.0 12,-3.4 0, 0.0 13,-0.5 0.733 93.4 64.7 -57.9 -24.4 -9.6 25.7 5.5 16 16 A E T 34 S+ 0 0 153 10,-0.2 13,-0.0 1,-0.2 -13,-0.0 0.789 115.4 28.8 -73.6 -22.8 -8.0 22.3 6.4 17 17 A D T <4 S- 0 0 109 -3,-1.6 -1,-0.2 9,-0.1 7,-0.1 0.637 91.1-170.5-108.9 -16.1 -7.1 21.6 2.7 18 18 A G < - 0 0 4 -4,-2.0 -4,-0.4 7,-0.2 7,-0.2 -0.229 42.2 -86.4 60.9-152.0 -6.7 25.3 1.6 19 19 A D B > > +C 24 0B 20 5,-2.5 5,-2.0 -4,-0.1 3,-1.6 -0.563 53.5 174.1-151.2 67.0 -6.4 25.7 -2.3 20 20 A P G > 5S+ 0 0 62 0, 0.0 3,-1.8 0, 0.0 5,-0.1 0.790 70.6 64.3 -54.8 -34.7 -2.6 25.3 -2.6 21 21 A D G 3 5S+ 0 0 153 1,-0.3 4,-0.1 2,-0.1 0, 0.0 0.728 110.0 42.2 -62.6 -21.8 -2.5 25.4 -6.4 22 22 A N G < 5S- 0 0 98 -3,-1.6 -1,-0.3 2,-0.2 3,-0.1 0.036 129.7 -94.6-112.5 24.0 -3.8 29.0 -6.2 23 23 A G T < 5S+ 0 0 55 -3,-1.8 2,-0.7 1,-0.2 -2,-0.1 0.648 86.0 125.7 75.5 19.9 -1.5 30.0 -3.2 24 24 A V B < -C 19 0B 2 -5,-2.0 -5,-2.5 9,-0.1 -1,-0.2 -0.922 51.3-146.6-109.6 108.1 -3.9 29.3 -0.3 25 25 A N > - 0 0 100 -2,-0.7 3,-1.7 -7,-0.2 -7,-0.2 -0.453 25.9 -92.2 -77.6 151.1 -2.2 27.0 2.0 26 26 A P T 3 S+ 0 0 74 0, 0.0 -10,-0.2 0, 0.0 -9,-0.1 -0.256 116.3 38.2 -54.7 142.3 -3.9 24.4 4.1 27 27 A G T 3 S+ 0 0 47 -12,-3.4 2,-0.5 1,-0.3 -11,-0.2 0.420 84.0 129.9 92.8 0.8 -4.8 26.0 7.5 28 28 A T < - 0 0 32 -3,-1.7 -1,-0.3 -13,-0.5 -10,-0.2 -0.742 54.9-134.1 -89.2 127.0 -5.7 29.5 5.9 29 29 A D >> - 0 0 49 -2,-0.5 3,-1.2 1,-0.1 4,-0.6 -0.472 24.4-111.2 -76.7 152.7 -9.1 30.8 7.1 30 30 A F G >4 S+ 0 0 18 -28,-0.4 3,-1.3 1,-0.3 -1,-0.1 0.856 115.9 59.8 -50.9 -41.2 -11.3 32.3 4.3 31 31 A K G 34 S+ 0 0 147 1,-0.3 -1,-0.3 4,-0.0 4,-0.1 0.848 104.9 50.3 -58.2 -35.9 -10.9 35.8 5.6 32 32 A D G <4 S+ 0 0 96 -3,-1.2 -1,-0.3 2,-0.1 -2,-0.2 0.493 80.6 109.8 -83.1 -4.5 -7.1 35.6 5.1 33 33 A I S << S- 0 0 1 -3,-1.3 -9,-0.1 -4,-0.6 4,-0.1 -0.546 89.1 -96.0 -69.1 133.3 -7.2 34.4 1.6 34 34 A P > - 0 0 77 0, 0.0 3,-2.3 0, 0.0 -1,-0.1 -0.199 33.1-122.3 -52.7 134.9 -6.0 37.2 -0.6 35 35 A D T 3 S+ 0 0 135 1,-0.3 11,-0.3 -4,-0.1 -2,-0.1 0.489 106.8 62.9 -60.8 -5.1 -9.0 39.1 -1.9 36 36 A D T 3 S+ 0 0 139 9,-0.1 -1,-0.3 10,-0.1 2,-0.1 0.439 78.0 111.8 -99.6 0.5 -8.1 38.7 -5.6 37 37 A W < - 0 0 16 -3,-2.3 9,-0.6 -4,-0.1 2,-0.3 -0.430 53.0-158.9 -70.1 147.2 -8.5 34.8 -5.3 38 38 A V B -D 45 0C 69 7,-0.2 7,-0.2 8,-0.1 6,-0.1 -0.868 32.7 -77.5-126.2 160.2 -11.5 33.4 -7.2 39 39 A C > - 0 0 2 5,-2.6 4,-2.2 -2,-0.3 3,-0.1 -0.354 37.2-141.2 -57.1 127.3 -13.4 30.2 -6.8 40 40 A P T 4 S+ 0 0 59 0, 0.0 -1,-0.2 0, 0.0 -21,-0.0 0.760 97.3 46.7 -64.9 -23.3 -11.4 27.4 -8.4 41 41 A A T 4 S+ 0 0 74 3,-0.1 -2,-0.1 1,-0.1 0, 0.0 0.840 132.4 8.2 -91.2 -30.1 -14.5 25.8 -10.0 42 42 A C T 4 S- 0 0 54 2,-0.1 -1,-0.1 -3,-0.1 -3,-0.0 0.488 89.4-122.9-128.8 -5.3 -16.4 28.8 -11.5 43 43 A G < + 0 0 42 -4,-2.2 2,-0.1 1,-0.2 0, 0.0 0.488 59.0 138.9 79.3 3.3 -14.1 31.8 -11.3 44 44 A V - 0 0 38 1,-0.1 -5,-2.6 -6,-0.1 -1,-0.2 -0.377 55.4 -96.8 -80.2 164.6 -16.4 34.3 -9.3 45 45 A G B > -D 38 0C 33 -7,-0.2 3,-1.9 1,-0.1 -7,-0.2 -0.161 32.6-100.3 -74.1 168.7 -15.0 36.4 -6.5 46 46 A K G > S+ 0 0 20 -9,-0.6 3,-2.2 -11,-0.3 -1,-0.1 0.779 113.8 77.6 -59.4 -26.1 -14.9 35.8 -2.7 47 47 A D G 3 S+ 0 0 147 1,-0.3 -1,-0.3 -41,-0.0 -2,-0.0 0.684 88.5 57.6 -60.0 -18.4 -17.9 38.2 -2.5 48 48 A Q G < S+ 0 0 87 -3,-1.9 -41,-2.6 2,-0.0 -1,-0.3 0.406 91.1 93.4 -93.7 3.4 -20.1 35.4 -3.7 49 49 A F E < -B 6 0A 21 -3,-2.2 2,-0.4 -43,-0.2 -43,-0.2 -0.577 55.8-163.5 -93.8 159.2 -19.1 33.0 -0.9 50 50 A E E -B 5 0A 112 -45,-2.1 -45,-2.8 -2,-0.2 2,-0.1 -0.994 29.3-101.4-141.2 145.8 -21.0 32.6 2.4 51 51 A E E -B 4 0A 74 -2,-0.4 2,-0.9 -47,-0.2 -47,-0.3 -0.403 31.3-128.6 -65.7 136.8 -19.9 31.1 5.6 52 52 A V - 0 0 48 -49,-2.9 2,-0.4 -2,-0.1 -49,-0.4 -0.781 30.5-147.9 -88.4 112.0 -21.2 27.5 6.2 53 53 A E 0 0 135 -2,-0.9 -49,-0.0 1,-0.1 -1,-0.0 -0.666 360.0 360.0 -88.9 134.8 -22.7 27.8 9.6 54 54 A E 0 0 191 -2,-0.4 -1,-0.1 0, 0.0 -52,-0.0 0.421 360.0 360.0-112.8 360.0 -22.8 24.8 11.9