==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 10-MAR-04 1SN6 . COMPND 2 MOLECULE: PROACTIVATOR POLYPEPTIDE; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR C.A.HAWKINS,E.DE ALBA,N.TJANDRA . 84 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6731.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 65 77.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 14 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 47 56.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 145 0, 0.0 79,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -9.8 23.5 2.5 8.8 2 2 A D > + 0 0 95 3,-0.0 4,-0.5 2,-0.0 5,-0.1 -0.068 360.0 110.6-157.5 43.3 20.9 -0.3 8.9 3 3 A V H > S+ 0 0 96 2,-0.1 4,-1.9 3,-0.1 5,-0.2 0.912 86.7 36.5 -88.4 -50.3 18.6 0.4 11.9 4 4 A Y H > S+ 0 0 159 1,-0.2 4,-3.4 2,-0.2 5,-0.3 0.841 108.3 67.2 -72.9 -30.0 15.3 1.3 10.2 5 5 A a H > S+ 0 0 27 2,-0.2 4,-0.7 1,-0.2 -1,-0.2 0.932 108.5 38.4 -56.4 -42.5 16.0 -1.2 7.4 6 6 A E H >X S+ 0 0 133 -4,-0.5 4,-2.9 2,-0.2 3,-1.0 0.959 117.3 48.3 -73.9 -50.0 15.5 -4.0 10.0 7 7 A V H 3X S+ 0 0 72 -4,-1.9 4,-1.6 1,-0.3 5,-0.4 0.878 112.7 50.7 -58.3 -34.0 12.7 -2.3 11.9 8 8 A b H 3X S+ 0 0 12 -4,-3.4 4,-0.8 -5,-0.2 -1,-0.3 0.721 113.9 45.2 -77.1 -17.8 11.0 -1.7 8.5 9 9 A E H X S+ 0 0 60 -4,-3.0 4,-4.1 1,-0.2 3,-1.0 0.961 107.1 56.4 -56.9 -45.8 2.0 -6.8 9.6 16 16 A T H 3X S+ 0 0 18 -4,-0.9 4,-3.6 -5,-0.4 -1,-0.2 0.936 96.8 62.6 -51.3 -48.5 1.9 -8.6 6.2 17 17 A K H 3< S+ 0 0 151 -4,-2.0 -1,-0.3 1,-0.2 4,-0.3 0.900 118.2 28.9 -46.7 -39.8 1.4 -11.9 8.0 18 18 A L H XX S+ 0 0 98 -4,-1.3 4,-1.0 -3,-1.0 3,-0.9 0.884 122.6 49.5 -88.3 -42.1 -1.9 -10.4 9.3 19 19 A I H 3< S+ 0 0 53 -4,-4.1 4,-0.3 1,-0.2 -3,-0.2 0.707 84.7 98.2 -67.6 -17.9 -2.6 -8.1 6.4 20 20 A D T 3< S- 0 0 73 -4,-3.6 -1,-0.2 -5,-0.4 -2,-0.1 0.876 117.8 -27.6 -38.5 -47.9 -1.9 -11.1 4.1 21 21 A N T <4 S+ 0 0 121 -3,-0.9 -1,-0.2 -4,-0.3 -2,-0.2 0.153 102.4 114.5-160.6 27.6 -5.7 -11.6 3.9 22 22 A N S < S+ 0 0 100 -4,-1.0 2,-0.5 1,-0.2 -3,-0.1 0.914 84.6 41.5 -72.1 -38.3 -7.4 -10.2 7.0 23 23 A K S S- 0 0 53 -4,-0.3 -1,-0.2 -5,-0.2 2,-0.0 -0.921 80.8-153.1-111.1 127.2 -9.2 -7.5 4.9 24 24 A T - 0 0 64 -2,-0.5 4,-0.2 -3,-0.1 -2,-0.0 -0.088 30.5-103.1 -84.5-169.8 -10.7 -8.4 1.5 25 25 A E S > S+ 0 0 60 1,-0.1 4,-1.2 2,-0.1 5,-0.2 0.266 105.4 80.0-100.2 12.4 -11.2 -6.1 -1.5 26 26 A K H > S+ 0 0 159 2,-0.2 4,-1.1 1,-0.2 5,-0.2 0.906 96.5 41.1 -84.5 -43.5 -15.0 -5.8 -0.9 27 27 A E H > S+ 0 0 111 3,-0.2 4,-1.3 2,-0.1 -1,-0.2 0.671 117.3 54.2 -77.4 -12.3 -14.7 -3.2 1.9 28 28 A I H > S+ 0 0 35 2,-0.2 4,-2.2 -4,-0.2 5,-0.3 0.953 107.9 41.0 -83.0 -71.9 -11.9 -1.5 -0.1 29 29 A L H X S+ 0 0 69 -4,-1.2 4,-1.2 1,-0.3 -2,-0.1 0.852 119.8 51.4 -46.3 -30.9 -13.5 -0.8 -3.6 30 30 A D H >X S+ 0 0 65 -4,-1.1 3,-0.6 -5,-0.2 4,-0.6 0.965 102.8 56.8 -72.3 -49.1 -16.6 0.1 -1.5 31 31 A A H >X S+ 0 0 22 -4,-1.3 3,-3.6 1,-0.3 4,-2.0 0.939 102.5 55.7 -46.6 -50.9 -14.6 2.5 0.7 32 32 A F H 3X S+ 0 0 48 -4,-2.2 4,-0.7 1,-0.3 -1,-0.3 0.928 99.2 59.9 -51.2 -40.8 -13.5 4.4 -2.4 33 33 A D H << S+ 0 0 91 -4,-1.2 -1,-0.3 -3,-0.6 -2,-0.2 0.674 116.8 36.4 -61.8 -8.8 -17.3 4.7 -3.2 34 34 A K H XX S+ 0 0 107 -3,-3.6 3,-1.4 -4,-0.6 4,-0.7 0.804 126.2 28.3-107.0 -67.5 -17.2 6.6 0.1 35 35 A M H >X S+ 0 0 97 -4,-2.0 3,-1.0 1,-0.3 4,-0.7 0.958 124.5 49.3 -64.1 -47.1 -14.0 8.6 0.6 36 36 A c H 3< S+ 0 0 5 -4,-0.7 -1,-0.3 -5,-0.4 -4,-0.1 0.279 97.3 79.3 -76.1 18.9 -13.6 9.1 -3.1 37 37 A S H <4 S+ 0 0 80 -3,-1.4 -1,-0.2 -6,-0.2 -2,-0.2 0.819 95.3 39.1 -92.3 -37.2 -17.2 10.2 -3.1 38 38 A K H << S+ 0 0 169 -3,-1.0 -2,-0.2 -4,-0.7 -1,-0.1 0.614 88.4 118.3 -87.9 -12.4 -16.7 13.8 -1.8 39 39 A L S < S- 0 0 60 -4,-0.7 5,-0.1 4,-0.1 -3,-0.0 -0.225 81.5 -92.5 -51.2 146.7 -13.5 14.2 -3.9 40 40 A P - 0 0 84 0, 0.0 4,-0.4 0, 0.0 5,-0.1 0.021 41.9-104.5 -51.8 170.4 -14.0 17.1 -6.4 41 41 A K S >> S+ 0 0 160 2,-0.2 4,-1.6 3,-0.2 3,-1.5 0.992 116.0 49.3 -66.5 -59.1 -15.3 16.0 -9.8 42 42 A S H >> S+ 0 0 79 1,-0.3 4,-1.3 2,-0.2 3,-1.0 0.942 119.4 36.6 -44.3 -62.6 -12.1 16.3 -11.7 43 43 A L H 3> S+ 0 0 94 1,-0.2 4,-0.7 2,-0.2 -1,-0.3 0.544 109.8 66.1 -74.2 -1.1 -9.9 14.4 -9.2 44 44 A S H <> S+ 0 0 22 -3,-1.5 4,-0.9 -4,-0.4 -1,-0.2 0.748 101.7 48.3 -88.4 -23.2 -12.9 12.0 -8.5 45 45 A E H X S+ 0 0 56 -4,-1.5 4,-3.1 2,-0.2 3,-0.9 0.932 104.1 65.3 -65.2 -41.7 -6.8 4.8 -10.9 51 51 A V H 3< S+ 0 0 8 -4,-0.9 5,-0.3 1,-0.3 -1,-0.2 0.945 99.4 51.8 -45.7 -51.6 -8.7 2.6 -8.4 52 52 A D H 3< S+ 0 0 128 -4,-1.5 3,-0.4 1,-0.3 4,-0.3 0.901 117.2 40.3 -53.4 -34.2 -9.4 0.2 -11.3 53 53 A T H << S+ 0 0 87 -4,-1.1 -2,-0.3 -3,-0.9 -1,-0.3 0.739 127.9 34.5 -85.1 -22.4 -5.6 0.4 -11.8 54 54 A Y S < S+ 0 0 132 -4,-3.1 -1,-0.2 -5,-0.1 -2,-0.2 -0.592 99.1 79.4-130.3 71.2 -5.0 0.3 -8.0 55 55 A G S > S+ 0 0 2 -3,-0.4 4,-0.5 -2,-0.2 -3,-0.1 0.484 99.1 24.4-138.5 -57.9 -7.7 -2.0 -6.5 56 56 A S H > S+ 0 0 72 -4,-0.3 4,-0.6 -5,-0.3 -2,-0.1 0.728 132.1 39.9 -88.8 -21.4 -6.9 -5.7 -6.9 57 57 A S H >> S+ 0 0 51 2,-0.2 4,-3.0 3,-0.2 3,-1.0 0.932 106.6 57.8 -89.2 -64.5 -3.2 -5.2 -7.3 58 58 A I H 3> S+ 0 0 63 1,-0.3 4,-0.7 -5,-0.2 5,-0.1 0.837 118.1 37.8 -32.8 -44.8 -2.4 -2.5 -4.7 59 59 A L H 3< S+ 0 0 18 -4,-0.5 -1,-0.3 1,-0.2 -2,-0.2 0.826 126.7 36.4 -81.1 -32.3 -3.9 -4.9 -2.1 60 60 A S H S+ 0 0 43 -3,-1.0 5,-1.1 -4,-0.6 4,-1.1 0.392 110.4 66.5 -99.5 2.1 -2.4 -8.1 -3.7 61 61 A I H <>S+ 0 0 40 -4,-3.0 5,-1.2 2,-0.2 3,-0.2 0.940 96.7 44.3 -89.3 -66.6 0.9 -6.4 -4.8 62 62 A L T <5S+ 0 0 69 -4,-0.7 9,-0.2 -5,-0.2 -1,-0.1 0.744 118.3 53.9 -51.1 -18.2 2.8 -5.5 -1.5 63 63 A L T 45S- 0 0 30 -4,-0.1 -1,-0.2 -5,-0.1 -2,-0.2 0.931 132.3 -13.2 -85.2 -52.1 1.7 -9.0 -0.4 64 64 A E T <5S+ 0 0 148 -4,-1.1 -3,-0.2 -3,-0.2 -2,-0.1 0.722 127.1 58.1-120.6 -57.8 2.9 -11.4 -3.2 65 65 A E T - 0 0 75 -2,-0.3 4,-1.7 1,-0.1 -3,-0.1 -0.755 28.0-116.4-103.5 153.4 7.9 -9.1 -0.6 68 68 A P H > S+ 0 0 24 0, 0.0 4,-1.3 0, 0.0 -1,-0.1 0.896 115.1 53.5 -55.9 -42.3 7.5 -7.0 2.6 69 69 A E H > S+ 0 0 105 1,-0.2 4,-1.2 2,-0.2 3,-0.3 0.947 102.9 56.0 -61.2 -46.4 11.3 -6.3 2.7 70 70 A L H >> S+ 0 0 80 1,-0.2 4,-2.5 2,-0.2 3,-1.7 0.946 98.8 62.5 -52.5 -47.1 11.3 -5.0 -0.9 71 71 A V H 3X S+ 0 0 8 -4,-1.7 4,-3.8 1,-0.3 5,-0.4 0.936 96.9 56.9 -44.9 -51.3 8.6 -2.4 0.1 72 72 A b H 3X>S+ 0 0 6 -4,-1.3 5,-1.7 -3,-0.3 4,-0.8 0.885 110.9 46.1 -49.7 -33.6 11.1 -0.9 2.6 73 73 A S H X<5S+ 0 0 81 -3,-1.7 3,-1.2 -4,-1.2 -2,-0.2 0.976 111.3 48.2 -74.1 -54.7 13.3 -0.5 -0.5 74 74 A M H 3<5S+ 0 0 106 -4,-2.5 -2,-0.2 1,-0.3 -3,-0.2 0.932 111.8 52.1 -50.1 -44.6 10.6 0.9 -2.8 75 75 A L H 3<5S- 0 0 101 -4,-3.8 -1,-0.3 -5,-0.3 -2,-0.2 0.813 102.7-141.8 -63.8 -26.0 9.8 3.3 0.1 76 76 A H T X<5 + 0 0 105 -3,-1.2 3,-0.5 -4,-0.8 -3,-0.2 0.938 48.6 148.4 65.9 43.4 13.5 4.2 0.2 77 77 A L T 3 < + 0 0 85 -5,-1.7 2,-0.5 1,-0.2 -4,-0.1 0.800 60.6 68.5 -80.7 -27.3 13.4 4.4 4.0 78 78 A a T 3 + 0 0 63 -6,-0.5 2,-0.7 -74,-0.1 -1,-0.2 0.015 69.8 159.5 -80.5 34.9 17.1 3.3 4.2 79 79 A S < + 0 0 61 -3,-0.5 3,-0.0 -2,-0.5 -2,-0.0 -0.416 16.1 176.8 -61.3 107.0 18.1 6.7 2.7 80 80 A G S S+ 0 0 74 -2,-0.7 2,-0.2 2,-0.1 -1,-0.2 0.796 71.9 18.5 -83.0 -27.4 21.8 6.9 3.7 81 81 A L S S- 0 0 89 -3,-0.1 3,-0.1 0, 0.0 0, 0.0 -0.644 108.8 -68.5-126.0-173.8 22.1 10.2 1.7 82 82 A V - 0 0 122 -2,-0.2 -2,-0.1 1,-0.1 0, 0.0 -0.691 63.2-101.7 -82.1 129.9 19.6 12.7 0.3 83 83 A P 0 0 90 0, 0.0 -1,-0.1 0, 0.0 -4,-0.0 -0.113 360.0 360.0 -47.5 142.2 17.6 11.1 -2.5 84 84 A R 0 0 263 -3,-0.1 -2,-0.0 0, 0.0 0, 0.0 0.963 360.0 360.0 -82.9 360.0 18.9 12.3 -5.9