==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 18-MAR-04 1SQ8 . COMPND 2 MOLECULE: DH434; . SOURCE 2 ORGANISM_SCIENTIFIC: PHAGE 434; . AUTHOR H.IWAI,G.WIDER,K.WUTHRICH . 64 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4237.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 44 68.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 10.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 30 46.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 5 7.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 0 A M 0 0 147 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 170.1 -8.4 -5.6 9.0 2 1 A L > - 0 0 143 1,-0.0 4,-2.2 0, 0.0 5,-0.1 -0.446 360.0 -86.2 -93.1-178.0 -7.9 -2.0 7.9 3 2 A M H > S+ 0 0 22 58,-0.3 4,-2.9 2,-0.2 5,-0.2 0.866 122.2 56.2 -53.7 -53.6 -5.8 -0.6 5.1 4 3 A G H > S+ 0 0 6 1,-0.2 4,-2.5 2,-0.2 -1,-0.2 0.931 111.9 42.4 -54.2 -49.4 -2.5 -0.3 7.0 5 4 A E H > S+ 0 0 118 2,-0.2 4,-3.0 1,-0.2 -1,-0.2 0.887 113.6 53.9 -64.7 -40.0 -2.6 -4.0 8.1 6 5 A R H X S+ 0 0 7 -4,-2.2 4,-2.9 2,-0.2 5,-0.3 0.920 111.4 45.1 -55.0 -51.2 -3.7 -5.0 4.5 7 6 A I H X S+ 0 0 0 -4,-2.9 4,-2.1 2,-0.2 -2,-0.2 0.926 115.7 45.7 -65.1 -47.3 -0.7 -3.1 3.0 8 7 A R H X S+ 0 0 112 -4,-2.5 4,-2.4 -5,-0.2 -2,-0.2 0.934 115.6 49.2 -58.7 -45.9 1.8 -4.5 5.5 9 8 A A H X S+ 0 0 44 -4,-3.0 4,-2.9 2,-0.2 5,-0.2 0.963 112.9 42.7 -58.3 -62.2 0.3 -8.0 5.1 10 9 A R H X S+ 0 0 63 -4,-2.9 4,-1.8 1,-0.2 -1,-0.2 0.862 114.0 53.8 -62.3 -35.8 0.4 -8.2 1.3 11 10 A R H <>S+ 0 0 6 -4,-2.1 5,-2.2 -5,-0.3 -1,-0.2 0.949 112.4 42.5 -58.2 -52.3 3.9 -6.6 1.2 12 11 A I H ><5S+ 0 0 77 -4,-2.4 3,-1.0 3,-0.2 -2,-0.2 0.856 111.1 56.1 -66.7 -34.3 5.2 -9.2 3.6 13 12 A Q H 3<5S+ 0 0 135 -4,-2.9 -1,-0.2 1,-0.3 -2,-0.2 0.844 110.8 44.7 -57.1 -36.4 3.3 -11.9 1.6 14 13 A L T 3<5S- 0 0 72 -4,-1.8 -1,-0.3 -5,-0.2 -2,-0.2 0.434 111.7-131.6 -83.4 -5.2 5.3 -10.5 -1.4 15 14 A G T < 5 + 0 0 62 -3,-1.0 -3,-0.2 1,-0.2 2,-0.2 0.625 61.7 137.5 59.8 16.6 8.4 -10.6 0.9 16 15 A L < - 0 0 42 -5,-2.2 -1,-0.2 -6,-0.2 2,-0.2 -0.501 51.3-127.6 -88.4 163.6 9.1 -7.0 -0.2 17 16 A N > - 0 0 106 -2,-0.2 4,-2.6 -3,-0.1 5,-0.2 -0.524 30.5-102.4 -96.6 171.6 10.3 -4.2 2.1 18 17 A Q H > S+ 0 0 26 1,-0.2 4,-3.0 2,-0.2 5,-0.2 0.952 122.0 46.6 -58.4 -52.0 8.5 -0.8 2.3 19 18 A A H > S+ 0 0 43 1,-0.2 4,-3.0 2,-0.2 -1,-0.2 0.877 114.1 48.4 -60.1 -39.5 11.2 1.0 0.2 20 19 A E H > S+ 0 0 92 2,-0.2 4,-2.1 1,-0.2 -1,-0.2 0.932 114.3 43.9 -70.6 -46.9 11.2 -1.8 -2.4 21 20 A L H X S+ 0 0 0 -4,-2.6 4,-1.7 2,-0.2 5,-0.2 0.960 115.9 50.5 -56.0 -52.6 7.4 -1.9 -2.7 22 21 A A H >X>S+ 0 0 0 -4,-3.0 4,-2.9 -5,-0.2 5,-1.2 0.930 110.5 48.0 -50.9 -55.6 7.4 1.9 -2.8 23 22 A Q H 3<5S+ 0 0 137 -4,-3.0 -1,-0.2 1,-0.3 -2,-0.2 0.841 110.0 51.8 -55.0 -45.0 10.1 2.1 -5.5 24 23 A K H 3<5S+ 0 0 109 -4,-2.1 -1,-0.3 1,-0.2 -2,-0.2 0.741 115.0 42.0 -76.1 -21.5 8.3 -0.4 -7.7 25 24 A V H <<5S- 0 0 22 -4,-1.7 -2,-0.2 -3,-0.8 -1,-0.2 0.854 119.2-114.6 -76.0 -42.8 5.1 1.6 -7.5 26 25 A G T <5S+ 0 0 64 -4,-2.9 -3,-0.2 1,-0.3 -4,-0.1 0.073 78.1 113.4 125.5 -14.3 7.1 4.8 -7.9 27 26 A V S > - 0 0 104 1,-0.1 4,-0.9 -6,-0.1 3,-0.7 -0.616 28.3-118.2 -85.9 154.2 8.6 6.9 -1.4 29 28 A Q H >> S+ 0 0 103 1,-0.2 4,-1.8 -2,-0.2 3,-1.0 0.883 114.4 62.8 -51.8 -43.5 9.2 4.4 1.5 30 29 A Q H 3> S+ 0 0 142 1,-0.3 4,-2.5 2,-0.2 -1,-0.2 0.832 95.1 57.9 -57.9 -43.0 7.7 7.0 3.8 31 30 A A H <> S+ 0 0 4 -3,-0.7 4,-1.4 1,-0.2 -1,-0.3 0.831 107.4 48.8 -54.8 -34.1 4.3 6.9 2.0 32 31 A I H S+ 0 0 69 -4,-2.5 5,-2.8 1,-0.2 6,-0.6 0.875 112.0 53.0 -64.6 -34.2 2.3 6.3 6.9 35 34 A L H ><5S+ 0 0 1 -4,-1.4 3,-0.8 -5,-0.2 -2,-0.2 0.919 107.6 52.7 -65.7 -41.4 -0.2 4.1 5.1 36 35 A E H 3<5S+ 0 0 55 -4,-2.4 -2,-0.2 1,-0.2 -1,-0.2 0.927 110.5 45.7 -57.2 -49.4 0.8 1.2 7.5 37 36 A N H 3<5S- 0 0 109 -4,-2.2 -1,-0.2 -5,-0.1 -2,-0.2 0.551 119.6-112.5 -79.3 -0.9 0.1 3.4 10.6 38 37 A G T <<5S+ 0 0 55 -3,-0.8 -3,-0.2 -4,-0.6 -2,-0.1 0.584 82.0 123.7 88.6 12.3 -3.2 4.5 8.9 39 38 A K < + 0 0 140 -5,-2.8 2,-0.6 -6,-0.2 -4,-0.2 0.800 63.7 57.7 -79.0 -33.3 -2.1 8.2 8.4 40 39 A A + 0 0 15 -6,-0.6 -2,-0.1 1,-0.2 -1,-0.1 -0.919 61.4 176.7 -99.8 115.2 -2.7 8.3 4.6 41 40 A K S S- 0 0 150 -2,-0.6 -1,-0.2 1,-0.3 -2,-0.1 0.964 78.4 -4.7 -76.6 -76.2 -6.3 7.5 3.8 42 41 A R S S- 0 0 204 3,-0.0 -1,-0.3 4,-0.0 2,-0.2 -0.910 78.2-175.9-121.0 91.0 -6.4 7.9 -0.0 43 42 A P > - 0 0 24 0, 0.0 3,-1.7 0, 0.0 -3,-0.0 -0.490 43.7 -97.1 -73.8 167.2 -3.1 9.3 -1.2 44 43 A R T 3 S+ 0 0 230 1,-0.3 4,-0.2 -2,-0.2 0, 0.0 0.862 119.7 54.0 -51.9 -45.4 -2.8 10.1 -4.9 45 44 A F T >> + 0 0 12 1,-0.2 4,-2.7 2,-0.1 3,-0.8 0.257 68.2 119.5 -81.2 4.3 -1.2 6.9 -5.9 46 45 A L H <> S+ 0 0 1 -3,-1.7 4,-2.3 1,-0.3 -1,-0.2 0.843 80.9 41.8 -48.4 -45.0 -3.8 4.5 -4.4 47 46 A P H 3> S+ 0 0 71 0, 0.0 4,-2.8 0, 0.0 -1,-0.3 0.817 115.0 53.0 -68.4 -30.0 -4.7 2.8 -7.8 48 47 A E H <> S+ 0 0 103 -3,-0.8 4,-3.0 2,-0.2 -2,-0.2 0.954 112.1 43.1 -68.7 -50.6 -1.0 2.7 -8.8 49 48 A L H X S+ 0 0 0 -4,-2.7 4,-2.3 2,-0.2 -1,-0.2 0.898 115.0 51.2 -61.1 -43.0 -0.1 0.9 -5.6 50 49 A A H X>S+ 0 0 2 -4,-2.3 5,-2.5 -5,-0.3 4,-1.4 0.953 112.1 45.7 -58.5 -50.4 -3.1 -1.3 -6.0 51 50 A R H ><5S+ 0 0 216 -4,-2.8 3,-0.8 1,-0.2 -2,-0.2 0.943 115.3 46.7 -57.0 -50.9 -2.1 -2.2 -9.6 52 51 A A H 3<5S+ 0 0 26 -4,-3.0 -1,-0.2 1,-0.3 -2,-0.2 0.807 112.8 50.5 -62.4 -34.2 1.5 -2.8 -8.6 53 52 A L H 3<5S- 0 0 2 -4,-2.3 -1,-0.3 -5,-0.2 -2,-0.2 0.667 115.0-117.5 -74.3 -23.8 0.3 -4.9 -5.6 54 53 A G T <<5S+ 0 0 59 -4,-1.4 2,-0.3 -3,-0.8 -3,-0.2 0.783 78.8 100.7 90.9 29.2 -1.9 -7.0 -7.9 55 54 A V S - 0 0 56 -2,-0.3 4,-2.5 1,-0.1 7,-0.1 -0.503 27.8-120.1 -80.1 160.2 -8.1 -3.5 -6.7 57 56 A V H > S+ 0 0 47 2,-0.2 4,-3.4 1,-0.2 5,-0.2 0.882 121.2 56.3 -59.7 -36.8 -8.5 -0.1 -5.1 58 57 A D H >>S+ 0 0 99 2,-0.2 4,-3.0 1,-0.2 5,-1.0 0.913 106.7 47.6 -64.7 -38.2 -11.7 -1.6 -3.6 59 58 A W H 45S+ 0 0 47 3,-0.2 -2,-0.2 2,-0.2 -1,-0.2 0.931 114.0 47.6 -64.1 -45.1 -9.5 -4.4 -2.1 60 59 A L H <5S+ 0 0 0 -4,-2.5 -2,-0.2 1,-0.2 -1,-0.2 0.973 117.9 41.3 -57.4 -54.3 -7.1 -1.7 -0.8 61 60 A L H <5S+ 0 0 59 -4,-3.4 -58,-0.3 1,-0.1 -2,-0.2 0.895 140.4 3.0 -56.5 -50.2 -10.0 0.4 0.6 62 61 A N T <5S- 0 0 98 -4,-3.0 -3,-0.2 -5,-0.2 -2,-0.1 0.770 94.2-114.7-119.2 -44.2 -12.1 -2.5 2.1 63 62 A G < 0 0 28 -5,-1.0 -4,-0.2 -4,-0.2 -3,-0.1 0.903 360.0 360.0 95.5 72.2 -10.3 -5.9 1.6 64 63 A A 0 0 108 -8,-0.1 -8,-0.0 0, 0.0 0, 0.0 -0.173 360.0 360.0 -60.5 360.0 -12.2 -8.3 -0.7