==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNALING PROTEIN 10-MAY-04 1T7H . COMPND 2 MOLECULE: ENDOTHELIN-1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR F.HOH,R.CERDAN,Q.KAAS,Y.NISHI,L.CHICHE,S.KUBO,N.CHINO, . 36 2 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2805.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 61.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 10 27.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 146 0, 0.0 17,-0.2 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 161.0 23.3 14.6 16.5 2 2 A R - 0 0 87 15,-1.8 23,-2.7 1,-0.2 24,-0.5 0.810 360.0 -14.8 -71.0 -35.2 23.2 12.3 19.5 3 3 A a E -A 24 0A 0 14,-1.2 2,-0.5 21,-0.3 21,-0.2 -0.975 61.5-110.7-163.5 167.2 22.8 9.0 17.5 4 4 A S E -A 23 0A 56 19,-2.1 19,-1.9 -2,-0.3 2,-0.3 -0.967 35.5-131.2-113.9 122.2 22.0 7.5 14.2 5 5 A b E -A 22 0A 24 -2,-0.5 17,-0.3 17,-0.2 3,-0.2 -0.535 4.7-144.5 -81.0 135.1 18.8 5.5 13.9 6 6 A S S S+ 0 0 84 15,-2.4 2,-0.4 -2,-0.3 16,-0.1 0.824 96.0 24.3 -61.3 -34.0 18.6 2.1 12.4 7 7 A S > - 0 0 42 14,-0.5 3,-1.6 3,-0.1 -1,-0.2 -0.981 62.8-157.0-133.3 127.2 15.2 3.0 10.9 8 8 A L T 3 S+ 0 0 112 -2,-0.4 6,-0.1 1,-0.3 -1,-0.1 0.642 96.4 68.4 -75.7 -10.0 14.0 6.5 10.2 9 9 A M T 3 S+ 0 0 167 1,-0.1 2,-1.4 4,-0.0 -1,-0.3 0.595 77.0 90.1 -73.6 -17.0 10.5 5.1 10.5 10 10 A D <> - 0 0 41 -3,-1.6 4,-1.9 1,-0.2 3,-0.4 -0.708 62.6-175.2 -83.7 90.4 11.2 4.6 14.3 11 11 A K H > S+ 0 0 107 -2,-1.4 4,-2.7 1,-0.3 5,-0.2 0.876 76.8 55.2 -66.7 -36.8 10.0 8.0 15.3 12 12 A E H > S+ 0 0 100 1,-0.2 4,-2.2 2,-0.2 -1,-0.3 0.882 108.2 51.4 -62.8 -36.0 11.0 7.8 19.0 13 13 A b H > S+ 0 0 0 -3,-0.4 4,-3.0 2,-0.2 5,-0.3 0.930 108.8 51.2 -60.2 -45.1 14.5 7.0 17.8 14 14 A V H X S+ 0 0 27 -4,-1.9 4,-2.4 1,-0.2 -2,-0.2 0.936 111.8 46.7 -58.5 -45.4 14.4 10.1 15.6 15 15 A Y H < S+ 0 0 148 -4,-2.7 -1,-0.2 1,-0.2 -2,-0.2 0.898 117.0 42.9 -67.1 -39.1 13.3 12.3 18.5 16 16 A F H < S+ 0 0 41 -4,-2.2 -1,-0.2 -5,-0.2 -2,-0.2 0.931 121.5 39.6 -68.6 -45.3 15.9 10.9 20.9 17 17 A a H < 0 0 1 -4,-3.0 -15,-1.8 -5,-0.2 -14,-1.2 0.736 360.0 360.0 -81.3 -25.0 18.7 10.9 18.4 18 18 A H < 0 0 139 -4,-2.4 -3,-0.2 -5,-0.3 -2,-0.2 0.594 360.0 360.0-115.4 360.0 18.0 14.2 16.7 19 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 20 1 B K 0 0 163 0, 0.0 17,-0.2 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 151.9 21.0 -2.1 17.8 21 2 B R - 0 0 93 15,-2.8 -15,-2.4 1,-0.2 -14,-0.5 0.708 360.0 -16.2 -74.0 -26.6 18.3 0.5 17.5 22 3 B c E -A 5 0A 1 14,-0.7 2,-0.5 -17,-0.3 -17,-0.2 -0.963 64.9-110.0-167.9 169.1 20.8 3.2 16.8 23 4 B S E -A 4 0A 55 -19,-1.9 -19,-2.1 -2,-0.3 2,-0.2 -0.980 35.0-129.6-117.9 125.5 24.5 4.0 17.0 24 5 B d E -A 3 0A 16 -2,-0.5 -21,-0.3 -21,-0.2 3,-0.1 -0.530 3.2-145.0 -81.1 139.6 25.7 6.6 19.6 25 6 B S S S+ 0 0 83 -23,-2.7 2,-0.5 -2,-0.2 -22,-0.1 0.842 95.7 38.3 -65.1 -38.0 27.8 9.6 18.7 26 7 B S > - 0 0 41 -24,-0.5 3,-1.5 1,-0.1 -1,-0.2 -0.975 65.5-160.7-118.9 120.7 29.5 9.3 22.1 27 8 B L T 3 S+ 0 0 147 -2,-0.5 -1,-0.1 1,-0.3 -2,-0.1 0.647 96.2 60.5 -72.1 -13.9 30.2 5.9 23.6 28 9 B M T 3 S+ 0 0 164 1,-0.1 2,-1.5 5,-0.0 -1,-0.3 0.433 77.0 98.7 -87.3 -4.1 30.5 7.6 27.0 29 10 B D <> - 0 0 36 -3,-1.5 4,-2.4 1,-0.2 3,-0.3 -0.675 56.8-175.0 -85.3 89.0 26.9 8.8 26.7 30 11 B K H > S+ 0 0 141 -2,-1.5 4,-2.8 1,-0.3 5,-0.2 0.879 76.7 53.6 -63.0 -40.4 25.4 6.0 28.8 31 12 B E H > S+ 0 0 135 1,-0.2 4,-2.2 2,-0.2 -1,-0.3 0.887 111.1 48.3 -63.3 -36.8 21.8 6.9 28.4 32 13 B d H > S+ 0 0 0 -3,-0.3 4,-3.0 2,-0.2 5,-0.3 0.929 110.2 51.1 -62.7 -47.5 22.3 6.8 24.6 33 14 B V H X S+ 0 0 38 -4,-2.4 4,-2.0 1,-0.2 -2,-0.2 0.937 112.8 46.2 -58.1 -43.4 24.1 3.4 24.9 34 15 B Y H < S+ 0 0 152 -4,-2.8 -1,-0.2 1,-0.2 -2,-0.2 0.910 114.8 46.7 -66.8 -40.6 21.2 2.0 26.9 35 16 B F H < S+ 0 0 43 -4,-2.2 -2,-0.2 -5,-0.2 -1,-0.2 0.925 114.7 46.6 -63.6 -45.0 18.5 3.4 24.6 36 17 B c H < 0 0 0 -4,-3.0 -15,-2.8 1,-0.2 -14,-0.7 0.785 360.0 360.0 -76.5 -25.1 20.3 2.2 21.4 37 18 B H < 0 0 175 -4,-2.0 -1,-0.2 -5,-0.3 -2,-0.2 0.782 360.0 360.0 -91.8 360.0 21.0 -1.3 22.8