==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GROWTH FACTOR 13-JUN-90 4TGF . COMPND 2 MOLECULE: DES-VAL-1,VAL-2,TRANSFORMING GROWTH FACTOR, . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR T.P.KLINE,F.K.BROWN,S.C.BROWN,P.W.JEFFS,K.D.KOPPLE,L.MUELLER . 50 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4473.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 44.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 18.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 12.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 8.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 203 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -34.8 21.1 0.5 2.0 2 2 A V - 0 0 116 1,-0.0 2,-0.1 0, 0.0 4,-0.0 0.916 360.0 -75.2 -82.7 -45.4 17.7 0.3 3.6 3 3 A S - 0 0 72 0, 0.0 3,-0.1 0, 0.0 -1,-0.0 -0.417 63.3 -65.2-173.8-104.5 16.5 -2.9 2.0 4 4 A H S S+ 0 0 143 1,-0.2 21,-0.5 -2,-0.1 2,-0.4 0.287 104.9 71.8-156.0 4.7 15.3 -3.5 -1.6 5 5 A F - 0 0 106 19,-0.1 2,-1.8 20,-0.1 -1,-0.2 -0.964 64.9-147.7-132.5 117.8 12.0 -1.5 -1.9 6 6 A N - 0 0 93 -2,-0.4 18,-0.0 17,-0.3 0, 0.0 -0.556 45.3-103.8 -85.0 80.2 12.0 2.3 -2.0 7 7 A D S S- 0 0 134 -2,-1.8 16,-0.2 15,-0.0 -1,-0.1 -0.097 78.8 -38.4 40.3-103.0 8.7 3.0 -0.3 8 8 A a - 0 0 26 1,-0.1 5,-0.1 14,-0.1 15,-0.1 -0.976 64.8 -92.7-148.0 159.7 6.5 3.9 -3.3 9 9 A P - 0 0 31 0, 0.0 -1,-0.1 0, 0.0 14,-0.0 0.143 37.2-112.9 -59.4-174.4 6.9 5.7 -6.7 10 10 A D S S+ 0 0 152 2,-0.1 3,-0.3 3,-0.0 -2,-0.0 0.574 111.0 47.8-100.4 -12.9 5.9 9.4 -7.0 11 11 A S S S+ 0 0 75 1,-0.2 2,-0.5 2,-0.1 3,-0.5 0.901 111.8 43.9 -92.2 -52.5 2.9 8.8 -9.3 12 12 A H S S+ 0 0 77 1,-0.2 -1,-0.2 3,-0.0 3,-0.1 -0.061 70.5 138.9 -83.9 37.7 1.1 6.0 -7.4 13 13 A T S S+ 0 0 87 -2,-0.5 2,-0.5 -3,-0.3 -1,-0.2 0.770 71.9 47.8 -53.1 -23.4 1.7 7.8 -4.2 14 14 A Q + 0 0 122 -3,-0.5 -1,-0.2 1,-0.1 3,-0.1 -0.871 57.5 146.0-124.4 99.6 -1.9 6.8 -3.4 15 15 A F S S+ 0 0 91 -2,-0.5 2,-0.3 1,-0.3 -1,-0.1 0.500 75.7 19.3-107.0 -9.0 -2.7 3.1 -4.0 16 16 A b > - 0 0 21 1,-0.2 3,-0.6 3,-0.2 -1,-0.3 -0.931 69.2-129.2-161.6 135.0 -5.2 2.7 -1.1 17 17 A F T 3 S+ 0 0 139 25,-0.8 2,-0.9 -2,-0.3 -1,-0.2 0.957 104.8 12.8 -47.3 -78.3 -7.3 5.1 1.0 18 18 A H T 3 S+ 0 0 80 24,-0.7 17,-0.4 25,-0.4 -1,-0.3 -0.753 113.1 77.1-105.8 88.0 -6.3 3.8 4.4 19 19 A G S < S- 0 0 13 -2,-0.9 15,-0.3 -3,-0.6 -4,-0.2 -0.543 74.1-116.2 170.9 119.1 -3.3 1.5 3.8 20 20 A T E -A 33 0A 79 13,-1.4 13,-2.9 12,-0.2 2,-0.3 0.174 32.2-132.8 -50.9-177.4 0.4 2.1 3.2 21 21 A a E -A 32 0A 26 11,-0.3 11,-0.2 -8,-0.0 2,-0.2 -0.977 16.5-167.0-148.7 132.4 1.9 1.0 -0.2 22 22 A R E -A 31 0A 127 9,-0.6 9,-2.2 -2,-0.3 2,-0.3 -0.617 10.3-146.1-110.3 173.4 5.0 -0.9 -1.1 23 23 A F E -A 30 0A 33 7,-0.2 2,-1.3 -16,-0.2 -17,-0.3 -0.826 11.4-140.1-147.8 106.3 6.7 -1.4 -4.5 24 24 A L E > > -A 29 0A 61 5,-1.9 3,-0.8 -2,-0.3 5,-0.6 -0.464 21.7-179.0 -64.2 97.1 8.5 -4.5 -5.6 25 25 A V T 3 5S+ 0 0 63 -2,-1.3 -1,-0.2 -21,-0.5 -20,-0.1 0.602 77.5 66.7 -75.5 -8.9 11.4 -2.7 -7.4 26 26 A Q T 3 5S+ 0 0 148 1,-0.2 -1,-0.2 -22,-0.1 -2,-0.1 0.743 125.9 8.5 -81.5 -23.0 12.7 -6.2 -8.3 27 27 A E T < 5S- 0 0 132 -3,-0.8 -2,-0.2 2,-0.1 -1,-0.2 0.064 104.3-115.1-143.6 25.1 9.7 -6.8 -10.5 28 28 A D T 5 + 0 0 120 -4,-0.5 -3,-0.2 -5,-0.1 -5,-0.0 0.878 60.3 145.5 35.7 92.2 8.0 -3.4 -10.6 29 29 A K E < -A 24 0A 142 -5,-0.6 -5,-1.9 2,-0.0 -1,-0.1 -0.722 37.7-147.4-158.6 103.6 4.7 -4.1 -8.8 30 30 A P E +A 23 0A 43 0, 0.0 2,-0.3 0, 0.0 -7,-0.2 -0.444 24.6 177.7 -71.8 143.8 2.8 -1.6 -6.5 31 31 A A E -A 22 0A 21 -9,-2.2 -9,-0.6 -2,-0.1 2,-0.3 -0.872 23.5-115.8-138.9 173.8 0.8 -3.1 -3.6 32 32 A b E -A 21 0A 45 -2,-0.3 2,-0.4 -11,-0.2 -11,-0.3 -0.816 11.2-159.6-114.7 153.4 -1.3 -2.0 -0.7 33 33 A V E -A 20 0A 59 -13,-2.9 -13,-1.4 -2,-0.3 2,-0.3 -0.808 12.6-165.3-133.7 93.2 -0.7 -2.4 3.1 34 34 A c - 0 0 63 -2,-0.4 -15,-0.2 -15,-0.3 2,-0.2 -0.590 17.1-130.2 -81.4 137.2 -3.9 -2.0 5.1 35 35 A H > - 0 0 109 -17,-0.4 3,-1.9 -2,-0.3 2,-1.0 -0.545 37.1 -89.3 -83.8 151.1 -3.5 -1.5 8.9 36 36 A S T 3 S+ 0 0 136 1,-0.2 -1,-0.1 -2,-0.2 3,-0.1 -0.413 117.0 47.1 -61.4 100.1 -5.5 -3.7 11.3 37 37 A G T 3 S+ 0 0 28 -2,-1.0 10,-2.2 1,-0.6 2,-0.3 0.165 90.9 83.9 153.7 -21.3 -8.6 -1.6 11.7 38 38 A Y E < -B 46 0B 95 -3,-1.9 -1,-0.6 8,-0.2 2,-0.3 -0.743 51.6-172.9-107.3 156.7 -9.7 -0.6 8.1 39 39 A V E +B 45 0B 50 6,-1.0 6,-1.5 -2,-0.3 3,-0.1 -0.955 31.2 78.0-144.1 163.3 -11.7 -2.7 5.6 40 40 A G S > S- 0 0 39 -2,-0.3 3,-2.5 3,-0.2 -2,-0.0 -0.244 86.5 -76.1 116.7 153.5 -12.9 -2.6 2.0 41 41 A A T 3 S+ 0 0 94 1,-0.3 -1,-0.1 2,-0.1 0, 0.0 0.887 141.2 24.1 -49.5 -39.3 -11.2 -3.3 -1.4 42 42 A R T 3 S- 0 0 159 -3,-0.1 -25,-0.8 -26,-0.1 -24,-0.7 -0.031 114.5-111.0-114.7 28.3 -9.5 0.0 -1.0 43 43 A c S < S+ 0 0 2 -3,-2.5 -25,-0.4 -26,-0.2 -3,-0.2 0.806 76.9 138.7 46.9 29.2 -9.7 0.1 2.8 44 44 A E + 0 0 114 -27,-0.1 -4,-0.2 -6,-0.1 -1,-0.1 0.832 56.5 61.1 -72.0 -30.1 -12.2 3.0 2.2 45 45 A H E S-B 39 0B 126 -6,-1.5 -6,-1.0 -27,-0.0 2,-0.4 -0.176 81.5-129.2 -85.5-174.7 -14.5 1.6 4.9 46 46 A A E -B 38 0B 60 -8,-0.2 2,-1.4 -2,-0.0 -8,-0.2 -0.999 21.4-110.6-141.5 137.2 -13.7 1.2 8.6 47 47 A D - 0 0 64 -10,-2.2 -9,-0.0 -2,-0.4 -2,-0.0 -0.508 33.4-137.0 -68.0 95.2 -14.0 -1.8 10.9 48 48 A L S S- 0 0 173 -2,-1.4 -1,-0.2 1,-0.1 -10,-0.0 0.723 90.7 -3.9 -17.2 -59.6 -16.9 -0.4 13.1 49 49 A L 0 0 168 1,-0.4 -2,-0.1 -3,-0.1 -1,-0.1 0.772 360.0 360.0-106.5 -77.3 -15.1 -1.7 16.2 50 50 A A 0 0 113 -4,-0.1 -1,-0.4 -12,-0.0 -13,-0.1 -0.862 360.0 360.0-155.0 360.0 -11.9 -3.7 15.4