==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=13-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLASMINOGEN ACTIVATOR 26-MAY-93 1TPN . COMPND 2 MOLECULE: TISSUE-TYPE PLASMINOGEN ACTIVATOR; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR A.K.DOWNING,P.C.DRISCOLL,T.S.HARVEY,T.J.DUDGEON,B.O.SMITH, . 50 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4489.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 52.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 14 28.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 16.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 151 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -44.9 12.4 -0.2 -5.9 2 2 A Y - 0 0 187 1,-0.1 2,-1.0 2,-0.0 3,-0.2 -0.299 360.0-102.7 -77.7 167.1 13.3 -0.8 -2.3 3 3 A Q S S+ 0 0 191 1,-0.2 -1,-0.1 -2,-0.0 3,-0.0 -0.768 80.3 106.6 -95.7 99.7 10.6 -0.8 0.5 4 4 A V + 0 0 50 -2,-1.0 13,-0.4 35,-0.1 2,-0.2 0.249 54.2 93.1-153.4 10.6 10.7 2.5 2.3 5 5 A I - 0 0 102 -3,-0.2 2,-0.4 11,-0.2 11,-0.2 -0.658 56.6-145.0-109.0 166.7 7.7 4.4 1.2 6 6 A a E -A 15 0A 4 9,-2.1 9,-1.1 -2,-0.2 2,-0.7 -0.940 7.6-153.1-134.9 113.1 4.1 4.7 2.6 7 7 A R E -A 14 0A 196 -2,-0.4 2,-0.7 32,-0.2 7,-0.2 -0.750 9.3-167.2 -90.3 116.2 1.1 5.0 0.4 8 8 A D E >>> -A 13 0A 9 5,-1.7 4,-2.2 -2,-0.7 5,-1.3 -0.883 9.6-172.9-104.2 112.1 -1.8 6.9 2.0 9 9 A E T 345S+ 0 0 169 -2,-0.7 -1,-0.1 1,-0.2 5,-0.1 0.484 78.5 74.6 -81.3 -1.2 -5.1 6.5 0.1 10 10 A K T 345S+ 0 0 141 3,-0.1 -1,-0.2 1,-0.1 -2,-0.0 0.650 122.6 7.3 -84.0 -13.3 -6.8 9.0 2.4 11 11 A T T <45S- 0 0 56 -3,-0.9 -2,-0.2 2,-0.1 -1,-0.1 0.434 99.5-120.7-137.4 -20.0 -4.9 11.8 0.7 12 12 A Q T <5 + 0 0 140 -4,-2.2 2,-0.4 1,-0.2 -3,-0.2 0.914 68.0 128.9 75.0 44.3 -3.3 10.0 -2.2 13 13 A M E < -A 8 0A 106 -5,-1.3 -5,-1.7 -7,-0.0 -1,-0.2 -0.993 51.1-135.5-135.2 139.1 0.3 10.9 -1.1 14 14 A I E -A 7 0A 74 -2,-0.4 2,-0.3 -7,-0.2 -7,-0.2 -0.576 20.9-168.0 -89.7 154.5 3.4 8.8 -0.6 15 15 A Y E -A 6 0A 30 -9,-1.1 -9,-2.1 -2,-0.2 3,-0.1 -0.977 16.9-119.9-140.3 154.1 5.7 9.3 2.4 16 16 A Q > - 0 0 101 -2,-0.3 3,-1.2 -11,-0.2 20,-0.3 -0.136 49.4 -67.2 -83.4-175.7 9.2 8.0 3.3 17 17 A Q T 3 S+ 0 0 96 -13,-0.4 -1,-0.2 1,-0.3 20,-0.1 -0.382 119.2 5.6 -71.9 150.4 10.2 5.9 6.3 18 18 A H T 3 S+ 0 0 141 18,-1.2 2,-0.3 1,-0.2 -1,-0.3 0.738 100.1 144.7 49.4 19.6 9.9 7.4 9.8 19 19 A Q < - 0 0 73 -3,-1.2 17,-2.2 17,-0.0 2,-0.4 -0.703 42.5-140.9 -90.7 140.5 8.3 10.3 7.9 20 20 A S E +B 35 0B 64 -2,-0.3 2,-0.3 15,-0.2 15,-0.3 -0.821 23.6 169.4-105.2 140.3 5.4 12.2 9.6 21 21 A W E -B 34 0B 12 13,-3.2 13,-0.8 -2,-0.4 2,-0.0 -0.934 21.5-141.0-151.0 123.7 2.3 13.5 7.8 22 22 A L E -B 33 0B 89 -2,-0.3 11,-0.2 11,-0.2 9,-0.0 -0.275 15.9-158.7 -78.4 167.4 -0.9 14.9 9.3 23 23 A R E -B 32 0B 34 9,-2.0 9,-2.0 1,-0.2 -12,-0.1 -0.966 29.7 -77.6-144.4 158.9 -4.4 14.3 8.0 24 24 A P - 0 0 92 0, 0.0 8,-0.6 0, 0.0 -1,-0.2 0.146 56.8 -95.7 -47.6 171.8 -7.8 16.0 8.2 25 25 A V - 0 0 56 6,-0.2 6,-0.1 3,-0.1 4,-0.0 -0.230 23.4-120.0 -86.2 179.9 -9.9 15.6 11.3 26 26 A L S S- 0 0 99 -2,-0.1 -1,-0.1 0, 0.0 5,-0.0 0.951 74.7 -55.2 -84.7 -69.0 -12.7 13.2 12.0 27 27 A R S S+ 0 0 236 0, 0.0 -2,-0.0 0, 0.0 0, 0.0 0.395 123.7 48.3-150.2 -18.5 -15.8 15.3 12.7 28 28 A S S S- 0 0 93 0, 0.0 -3,-0.1 0, 0.0 0, 0.0 0.630 110.7 -73.2 -95.8-109.6 -14.8 17.7 15.5 29 29 A N S S+ 0 0 105 -5,-0.1 21,-0.4 2,-0.0 19,-0.3 0.178 85.7 119.8-141.8 15.3 -11.6 19.7 15.4 30 30 A R - 0 0 119 17,-0.1 2,-0.4 18,-0.1 15,-0.0 -0.003 54.5-128.5 -72.7-175.5 -9.0 17.1 16.1 31 31 A V - 0 0 46 15,-0.2 15,-0.9 -6,-0.1 2,-0.8 -1.000 9.6-127.3-140.5 138.1 -6.1 16.2 13.8 32 32 A E E -BC 23 45B 50 -9,-2.0 -9,-2.0 -8,-0.6 2,-0.5 -0.751 25.6-166.9 -89.3 115.4 -4.9 12.9 12.5 33 33 A Y E +BC 22 44B 86 11,-1.6 11,-3.1 -2,-0.8 2,-0.4 -0.875 16.3 162.1-103.0 126.4 -1.2 12.4 13.2 34 34 A b E +BC 21 43B 0 -13,-0.8 -13,-3.2 -2,-0.5 2,-0.3 -0.994 12.7 175.4-149.1 141.5 0.5 9.6 11.4 35 35 A W E -BC 20 42B 62 7,-3.1 7,-3.1 -2,-0.4 2,-0.6 -0.985 40.8 -97.8-141.6 152.0 4.0 8.6 10.5 36 36 A a + 0 0 0 -17,-2.2 -18,-1.2 -20,-0.3 -17,-0.0 -0.547 33.7 178.1 -72.1 112.4 5.6 5.6 8.8 37 37 A N S S- 0 0 76 -2,-0.6 -1,-0.2 -20,-0.1 -20,-0.1 0.652 84.7 -31.2 -88.8 -14.4 6.9 3.3 11.6 38 38 A S S S- 0 0 61 -3,-0.1 -2,-0.1 -33,-0.0 -21,-0.1 0.262 114.5 -53.5-173.7 -23.0 8.1 0.8 9.1 39 39 A G S S+ 0 0 43 -35,-0.1 -32,-0.2 -23,-0.1 -3,-0.1 0.405 117.3 85.8 144.4 13.2 5.8 1.0 6.0 40 40 A R S S- 0 0 188 -5,-0.1 -34,-0.1 -34,-0.1 -4,-0.1 0.252 95.7-113.0-118.9 8.5 2.3 0.5 7.5 41 41 A A - 0 0 30 1,-0.1 2,-0.7 -26,-0.1 -5,-0.3 0.916 26.3-136.9 58.0 98.5 1.7 4.1 8.3 42 42 A Q E -C 35 0B 71 -7,-3.1 -7,-3.1 2,-0.0 2,-0.3 -0.776 26.8-170.4 -89.7 117.4 1.5 4.5 12.1 43 43 A b E +C 34 0B 61 -2,-0.7 2,-0.3 -9,-0.3 -9,-0.3 -0.820 15.1 170.3-113.9 151.3 -1.4 6.7 13.1 44 44 A H E -C 33 0B 63 -11,-3.1 -11,-1.6 -2,-0.3 2,-0.7 -0.976 29.1-128.6-152.7 136.9 -2.5 8.3 16.4 45 45 A S E +C 32 0B 76 -2,-0.3 -13,-0.2 -13,-0.2 -11,-0.0 -0.801 31.4 166.8 -96.9 113.1 -5.1 10.9 17.2 46 46 A V - 0 0 81 -15,-0.9 -15,-0.2 -2,-0.7 -2,-0.1 -0.958 26.8-139.1-124.1 111.0 -3.9 13.8 19.3 47 47 A P - 0 0 76 0, 0.0 -17,-0.1 0, 0.0 -15,-0.0 -0.016 12.8-166.3 -61.8 172.9 -6.2 16.9 19.5 48 48 A V - 0 0 93 -19,-0.3 -18,-0.1 2,-0.1 -2,-0.0 0.326 27.8-133.6-140.5 -2.2 -4.9 20.4 19.4 49 49 A K 0 0 187 1,-0.1 -19,-0.1 -20,-0.0 0, 0.0 0.932 360.0 360.0 41.9 62.7 -7.9 22.4 20.6 50 50 A S 0 0 123 -21,-0.4 -1,-0.1 0, 0.0 -2,-0.1 -0.553 360.0 360.0 -74.2 360.0 -7.5 25.0 17.7