==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-SEP-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 09-SEP-11 3TQ2 . COMPND 2 MOLECULE: KE1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR S.GEREMIA,M.DE MARCH . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3922.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 31 88.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 30 85.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K > 0 0 196 0, 0.0 4,-2.3 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 -37.5 2.8 6.9 33.6 2 2 A V H > + 0 0 122 1,-0.2 4,-2.4 2,-0.2 5,-0.1 0.933 360.0 49.6 -69.2 -40.5 -0.3 8.9 34.4 3 3 A S H > S+ 0 0 76 2,-0.2 4,-1.9 1,-0.2 -1,-0.2 0.911 109.2 50.4 -62.8 -44.3 -2.1 5.7 35.4 4 4 A A H > S+ 0 0 51 1,-0.2 4,-1.9 2,-0.2 -1,-0.2 0.915 112.0 49.8 -59.8 -41.7 0.8 4.7 37.7 5 5 A L H X S+ 0 0 103 -4,-2.3 4,-2.7 1,-0.2 -1,-0.2 0.864 105.8 54.3 -64.7 -43.8 0.7 8.2 39.3 6 6 A K H X S+ 0 0 127 -4,-2.4 4,-2.4 1,-0.2 -1,-0.2 0.910 110.4 47.7 -59.0 -39.4 -3.1 8.1 39.8 7 7 A E H X S+ 0 0 100 -4,-1.9 4,-2.3 2,-0.2 -2,-0.2 0.853 109.8 52.3 -71.5 -35.7 -2.7 4.8 41.8 8 8 A K H X S+ 0 0 155 -4,-1.9 4,-2.1 2,-0.2 -1,-0.2 0.889 111.7 46.5 -65.4 -42.9 0.2 6.2 43.8 9 9 A V H X S+ 0 0 59 -4,-2.7 4,-2.7 1,-0.2 -2,-0.2 0.874 110.7 54.0 -68.6 -38.2 -2.0 9.2 44.7 10 10 A S H X S+ 0 0 58 -4,-2.4 4,-1.6 -5,-0.2 -2,-0.2 0.918 110.1 45.5 -57.5 -45.4 -4.9 6.9 45.6 11 11 A A H X S+ 0 0 52 -4,-2.3 4,-2.6 1,-0.2 -1,-0.2 0.888 112.1 52.0 -69.7 -38.6 -2.8 4.9 48.0 12 12 A L H X S+ 0 0 107 -4,-2.1 4,-2.4 1,-0.2 -1,-0.2 0.904 106.2 53.8 -66.9 -37.5 -1.4 8.0 49.5 13 13 A K H X S+ 0 0 133 -4,-2.7 4,-2.0 2,-0.2 -1,-0.2 0.911 109.6 48.4 -60.8 -35.5 -4.9 9.4 50.1 14 14 A E H X S+ 0 0 132 -4,-1.6 4,-2.0 2,-0.2 -2,-0.2 0.942 110.3 51.9 -68.2 -44.3 -5.9 6.2 51.9 15 15 A Q H X S+ 0 0 115 -4,-2.6 4,-2.2 1,-0.2 -2,-0.2 0.854 109.1 51.0 -55.1 -48.1 -2.7 6.5 54.0 16 16 A F H X S+ 0 0 115 -4,-2.4 4,-2.9 1,-0.2 -1,-0.2 0.858 107.7 51.7 -60.5 -46.0 -3.6 10.1 54.9 17 17 A L H X S+ 0 0 114 -4,-2.0 4,-2.0 2,-0.2 -1,-0.2 0.891 110.7 48.6 -58.2 -43.9 -7.1 9.1 56.0 18 18 A M H X S+ 0 0 134 -4,-2.0 4,-2.0 2,-0.2 -2,-0.2 0.898 112.5 47.7 -66.1 -36.4 -5.6 6.4 58.3 19 19 A L H X S+ 0 0 108 -4,-2.2 4,-2.8 2,-0.2 5,-0.2 0.898 108.8 54.5 -71.8 -39.0 -3.1 8.9 59.8 20 20 A M H X S+ 0 0 99 -4,-2.9 4,-2.7 1,-0.2 5,-0.2 0.907 110.1 47.8 -56.5 -42.5 -5.9 11.5 60.3 21 21 A F H X S+ 0 0 145 -4,-2.0 4,-2.3 2,-0.2 -2,-0.2 0.919 111.9 49.0 -63.8 -42.5 -7.8 8.9 62.3 22 22 A K H X S+ 0 0 146 -4,-2.0 4,-2.2 1,-0.2 -2,-0.2 0.890 113.7 45.7 -65.4 -45.1 -4.7 8.0 64.3 23 23 A V H X S+ 0 0 87 -4,-2.8 4,-2.7 2,-0.2 5,-0.2 0.913 111.9 51.2 -67.1 -44.9 -3.9 11.6 65.1 24 24 A S H X S+ 0 0 83 -4,-2.7 4,-2.0 -5,-0.2 -2,-0.2 0.917 111.0 48.4 -59.9 -40.7 -7.6 12.4 66.1 25 25 A A H X S+ 0 0 49 -4,-2.3 4,-2.2 -5,-0.2 -2,-0.2 0.924 112.9 48.4 -65.2 -39.5 -7.7 9.4 68.4 26 26 A L H X S+ 0 0 107 -4,-2.2 4,-2.6 1,-0.2 -2,-0.2 0.901 108.4 54.2 -66.5 -40.5 -4.3 10.5 70.0 27 27 A K H X S+ 0 0 148 -4,-2.7 4,-2.4 2,-0.2 -1,-0.2 0.898 109.1 48.2 -60.2 -44.1 -5.5 14.1 70.4 28 28 A E H X S+ 0 0 133 -4,-2.0 4,-1.5 2,-0.2 -1,-0.2 0.925 110.5 51.2 -64.1 -43.6 -8.6 12.9 72.3 29 29 A K H X S+ 0 0 153 -4,-2.2 4,-1.0 1,-0.2 3,-0.3 0.906 110.7 48.7 -61.0 -41.5 -6.5 10.7 74.5 30 30 A V H >X S+ 0 0 78 -4,-2.6 4,-2.1 1,-0.2 3,-0.7 0.888 108.1 54.7 -68.8 -37.7 -4.2 13.6 75.3 31 31 A S H 3< S+ 0 0 59 -4,-2.4 -1,-0.2 1,-0.3 -2,-0.2 0.797 100.4 59.6 -66.7 -28.1 -7.2 15.8 76.1 32 32 A A H 3< S+ 0 0 83 -4,-1.5 -1,-0.3 -3,-0.3 -2,-0.2 0.779 111.6 42.0 -67.7 -28.5 -8.4 13.2 78.6 33 33 A L H << S+ 0 0 144 -4,-1.0 2,-0.3 -3,-0.7 -2,-0.2 0.824 129.3 13.0 -80.0 -40.6 -5.0 13.8 80.4 34 34 A K < 0 0 136 -4,-2.1 -1,-0.3 1,-0.1 -2,-0.0 -0.939 360.0 360.0-150.4 123.5 -4.9 17.6 80.1 35 35 A E 0 0 215 -2,-0.3 -1,-0.1 -3,-0.2 -2,-0.1 0.659 360.0 360.0 -89.1 360.0 -7.3 20.4 79.2