==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=13-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 19-NOV-96 1TXM . COMPND 2 MOLECULE: MAUROTOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: SCORPIO MAURUS; . AUTHOR E.BLANC,J.-M.SABATIER,R.KHARRAT,S.MEUNIER,M.EL AYEB,J.VAN . 34 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2613.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 44.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 8.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 23.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 145 0, 0.0 27,-0.2 0, 0.0 24,-0.2 0.000 360.0 360.0 360.0 58.4 3.1 0.9 -1.8 2 2 A S - 0 0 79 25,-0.6 24,-0.2 24,-0.2 2,-0.2 -0.028 360.0-177.0 -38.9 125.6 4.5 -2.5 -2.9 3 3 A a - 0 0 3 22,-2.5 3,-0.1 25,-0.4 25,-0.1 -0.588 25.8-145.2-119.6-177.1 8.0 -3.0 -1.6 4 4 A T S S- 0 0 118 1,-0.4 2,-0.2 -2,-0.2 20,-0.1 0.725 70.4 -8.2-118.2 -46.2 10.7 -5.7 -2.1 5 5 A G S > S- 0 0 28 1,-0.1 4,-2.3 20,-0.1 -1,-0.4 -0.824 74.5 -89.1-143.5-178.6 12.6 -6.0 1.2 6 6 A S H > S+ 0 0 32 -2,-0.2 4,-1.1 1,-0.2 17,-0.1 0.967 126.8 53.9 -59.2 -53.7 13.2 -4.4 4.6 7 7 A K H > S+ 0 0 140 1,-0.3 4,-0.6 2,-0.2 -1,-0.2 0.807 108.3 50.7 -49.7 -34.7 15.9 -2.2 3.1 8 8 A D H >4 S+ 0 0 79 1,-0.2 3,-0.9 2,-0.2 -1,-0.3 0.934 110.5 47.9 -70.2 -46.2 13.3 -1.1 0.5 9 9 A b H 3X S+ 0 0 0 -4,-2.3 4,-2.2 1,-0.2 -2,-0.2 0.557 96.6 76.6 -70.5 -9.5 10.9 -0.3 3.3 10 10 A Y H 3X S+ 0 0 69 -4,-1.1 4,-2.6 2,-0.2 -1,-0.2 0.846 89.5 54.8 -70.6 -36.2 13.7 1.6 5.1 11 11 A A H S+ 0 0 53 0, 0.0 4,-3.1 0, 0.0 5,-0.3 0.928 116.5 58.1 -72.3 -46.6 9.6 5.2 3.3 13 13 A c H X>S+ 0 0 4 -4,-2.2 4,-2.5 1,-0.2 5,-2.0 0.931 113.3 38.5 -41.6 -57.6 10.1 4.1 7.0 14 14 A R H <5S+ 0 0 200 -4,-2.6 -1,-0.2 3,-0.2 -3,-0.2 0.967 114.0 53.5 -57.2 -62.0 12.6 6.9 7.4 15 15 A K H <5S+ 0 0 181 -4,-2.5 -2,-0.2 -5,-0.2 -1,-0.2 0.839 117.7 38.5 -43.7 -45.2 10.7 9.4 5.2 16 16 A Q H <5S- 0 0 128 -4,-3.1 -2,-0.2 -5,-0.1 -1,-0.2 0.992 144.5 -36.7 -70.8 -68.3 7.5 8.8 7.4 17 17 A T T <5S- 0 0 64 -4,-2.5 -3,-0.2 -5,-0.3 -4,-0.1 0.656 76.4-103.4-128.5 -51.7 9.0 8.5 10.9 18 18 A G < - 0 0 43 -5,-2.0 -4,-0.2 -6,-0.1 -5,-0.1 0.701 38.9-161.9 112.9 69.7 12.3 6.7 11.1 19 19 A c - 0 0 12 -9,-0.1 3,-0.1 1,-0.1 -5,-0.1 -0.452 23.3-126.0 -76.8 151.7 11.7 3.1 12.3 20 20 A P S S- 0 0 83 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 0.988 92.3 -5.1 -56.4 -62.8 14.6 1.0 13.8 21 21 A N S S- 0 0 101 -8,-0.0 12,-0.3 -3,-0.0 11,-0.3 -0.853 75.1-147.5-129.2 162.4 13.9 -1.9 11.4 22 22 A A - 0 0 9 -2,-0.3 2,-0.3 9,-0.1 9,-0.2 -0.877 4.9-140.7-132.6 165.0 11.1 -2.4 8.9 23 23 A K E -A 30 0A 118 7,-2.3 7,-2.7 -2,-0.3 2,-0.3 -0.927 22.3-149.9-122.8 147.8 9.2 -5.3 7.4 24 24 A a E -A 29 0A 20 -2,-0.3 2,-0.3 5,-0.2 5,-0.2 -0.951 16.4-175.9-131.4 148.8 8.1 -5.6 3.7 25 25 A I - 0 0 79 3,-2.3 -22,-2.5 -2,-0.3 -20,-0.1 -0.956 36.9-123.7-130.9 147.9 5.4 -7.0 1.5 26 26 A N S S+ 0 0 106 -2,-0.3 -24,-0.2 -24,-0.2 3,-0.1 0.205 118.3 49.9 -80.0 21.0 5.2 -7.0 -2.3 27 27 A K S S- 0 0 144 1,-0.5 -25,-0.6 -26,-0.2 2,-0.3 0.564 129.5 -27.1-120.1 -44.7 1.8 -5.2 -1.7 28 28 A S - 0 0 42 -27,-0.2 -3,-2.3 -26,-0.1 -1,-0.5 -0.962 63.8 -96.2-165.1 175.3 3.1 -2.6 0.8 29 29 A b E -A 24 0A 31 -2,-0.3 2,-0.4 -5,-0.2 -5,-0.2 -0.736 26.2-145.2-106.0 154.4 5.8 -1.7 3.4 30 30 A K E -A 23 0A 117 -7,-2.7 -7,-2.3 -2,-0.3 2,-0.2 -0.983 10.5-159.9-125.6 131.2 5.5 -2.0 7.1 31 31 A d - 0 0 22 -2,-0.4 -9,-0.1 -9,-0.2 -21,-0.1 -0.598 11.2-168.4-104.2 164.4 7.1 0.4 9.7 32 32 A Y S S+ 0 0 165 -11,-0.3 -1,-0.2 -2,-0.2 -10,-0.1 0.690 79.6 55.5-112.7 -77.7 7.9 -0.1 13.3 33 33 A G 0 0 45 -12,-0.3 -14,-0.1 1,-0.1 -11,-0.0 0.723 360.0 360.0 -17.1 -74.3 8.8 3.3 14.8 34 34 A d 0 0 89 -21,-0.1 -1,-0.1 0, 0.0 -3,-0.1 0.319 360.0 360.0 -11.8 360.0 5.6 5.0 13.8