==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=13-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 13-JUL-04 1U0I . COMPND 2 MOLECULE: IAAL-E3; . SOURCE 2 SYNTHETIC: YES; . AUTHOR D.A.LINDHOUT,J.R.LITOWSKI,P.MERCIER,R.S.HODGES,B.D.SYKES . 42 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3844.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42100.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 78.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E >> 0 0 176 0, 0.0 3,-1.3 0, 0.0 4,-1.3 0.000 360.0 360.0 360.0 -17.2 15.1 -0.7 4.4 2 2 A I H 3> + 0 0 94 1,-0.3 4,-2.0 2,-0.2 5,-0.2 0.721 360.0 63.5 -66.7 -21.2 14.2 0.1 0.8 3 3 A A H 3> S+ 0 0 67 1,-0.2 4,-0.9 2,-0.2 -1,-0.3 0.714 103.0 48.3 -74.2 -21.6 12.7 -3.3 0.7 4 4 A A H <> S+ 0 0 56 -3,-1.3 4,-1.5 2,-0.2 -2,-0.2 0.767 108.6 53.0 -86.6 -30.1 10.2 -2.2 3.3 5 5 A L H X S+ 0 0 33 -4,-1.3 4,-0.6 2,-0.2 -2,-0.2 0.889 114.1 41.7 -70.9 -41.2 9.4 1.0 1.4 6 6 A E H X S+ 0 0 114 -4,-2.0 4,-0.7 1,-0.2 3,-0.3 0.802 112.0 55.7 -74.7 -30.9 8.6 -1.0 -1.7 7 7 A K H >X S+ 0 0 140 -4,-0.9 4,-0.6 1,-0.2 3,-0.5 0.825 101.7 57.6 -69.5 -32.7 6.8 -3.6 0.3 8 8 A E H >X S+ 0 0 93 -4,-1.5 4,-1.9 1,-0.2 3,-0.7 0.761 91.2 72.7 -68.1 -25.7 4.6 -0.9 1.7 9 9 A I H 3X S+ 0 0 20 -4,-0.6 4,-2.0 -3,-0.3 -1,-0.2 0.912 94.1 51.7 -54.1 -46.3 3.6 -0.1 -1.8 10 10 A A H < S+ 0 0 170 -4,-2.2 3,-0.5 -3,-0.2 4,-0.4 0.830 110.0 57.1 -74.8 -34.0 -4.3 -3.3 -1.5 15 15 A E H >X S+ 0 0 100 -4,-1.8 3,-2.1 1,-0.3 4,-0.6 0.889 99.6 57.7 -63.1 -41.0 -6.0 -0.3 0.2 16 16 A I H >X S+ 0 0 40 -4,-1.7 3,-0.8 1,-0.3 4,-0.6 0.767 94.9 67.5 -60.2 -25.4 -6.9 1.2 -3.1 17 17 A A H 0 0 204 0, 0.0 4,-1.2 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 143.4 16.8 6.5 -2.2 24 2 B I H > + 0 0 92 1,-0.2 4,-2.6 2,-0.2 5,-0.1 0.848 360.0 53.6 -68.2 -35.2 14.6 5.8 0.8 25 3 B A H > S+ 0 0 44 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.800 98.1 67.5 -68.3 -29.7 12.7 9.1 0.0 26 4 B A H > S+ 0 0 46 2,-0.2 4,-1.7 1,-0.2 3,-0.3 0.964 111.7 29.7 -53.4 -59.3 12.1 7.8 -3.5 27 5 B L H X S+ 0 0 45 -4,-1.2 4,-3.0 1,-0.2 5,-0.4 0.915 114.6 62.2 -67.2 -44.8 9.8 5.0 -2.3 28 6 B K H X S+ 0 0 128 -4,-2.6 4,-0.7 1,-0.2 -1,-0.2 0.784 107.2 48.4 -51.0 -28.1 8.7 7.1 0.7 29 7 B E H X S+ 0 0 135 -4,-1.8 4,-1.3 -3,-0.3 -1,-0.2 0.918 108.3 50.5 -78.3 -48.0 7.4 9.4 -2.0 30 8 B K H >X S+ 0 0 118 -4,-1.7 4,-2.3 1,-0.3 3,-1.1 0.939 113.7 45.3 -54.4 -51.7 5.7 6.8 -4.1 31 9 B I H 3X S+ 0 0 21 -4,-3.0 4,-2.4 1,-0.3 -1,-0.3 0.815 107.7 59.7 -61.6 -31.0 3.9 5.5 -1.0 32 10 B A H 3X S+ 0 0 37 -4,-0.7 4,-0.8 -5,-0.4 -1,-0.3 0.765 107.4 46.8 -67.7 -25.7 3.2 9.1 -0.2 33 11 B A H X S+ 0 0 123 -4,-2.3 4,-2.2 2,-0.2 3,-0.5 0.963 113.6 39.4 -66.2 -54.2 -4.6 8.5 -3.6 38 16 B I H 3X S+ 0 0 12 -4,-2.8 4,-2.6 1,-0.3 -1,-0.2 0.853 112.4 58.5 -63.3 -35.6 -6.3 6.0 -1.3 39 17 B A H 3X S+ 0 0 48 -4,-1.2 4,-1.2 -5,-0.3 -1,-0.3 0.807 107.0 49.5 -63.2 -30.0 -6.9 8.9 1.1 40 18 B A H X< S+ 0 0 62 -4,-1.2 3,-0.7 -3,-0.5 -2,-0.2 0.976 113.2 41.8 -72.0 -59.2 -8.8 10.6 -1.7 41 19 B L H 3< S+ 0 0 78 -4,-2.2 -2,-0.2 1,-0.3 -1,-0.2 0.828 106.9 67.5 -56.7 -32.7 -11.0 7.6 -2.6 42 20 B K H 3< 0 0 159 -4,-2.6 -1,-0.3 1,-0.3 -2,-0.2 0.929 360.0 360.0 -52.5 -50.6 -11.4 7.1 1.1 43 21 B E << 0 0 218 -4,-1.2 -1,-0.3 -3,-0.7 -4,-0.0 -0.797 360.0 360.0-107.3 360.0 -13.3 10.3 1.4