==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=13-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 20-JUL-04 1U2U . COMPND 2 MOLECULE: GENERAL CONTROL PROTEIN GCN4; . SOURCE 2 SYNTHETIC: YES; . AUTHOR D.N.MARTI,H.R.BOSSHARD . 60 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5032.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 49 81.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 13 21.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 55.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E > 0 0 132 0, 0.0 4,-2.4 0, 0.0 3,-0.4 0.000 360.0 360.0 360.0 23.1 -18.1 3.6 -5.0 2 2 A V H > + 0 0 83 1,-0.3 4,-1.1 2,-0.2 35,-0.0 0.888 360.0 42.9 -64.4 -39.0 -19.3 0.5 -3.2 3 3 A A H 4 S+ 0 0 76 1,-0.2 -1,-0.3 2,-0.2 4,-0.2 0.520 112.6 58.7 -83.1 -5.4 -18.4 -1.7 -6.0 4 4 A Q H >> S+ 0 0 104 -3,-0.4 4,-2.5 2,-0.2 3,-1.1 0.844 97.9 54.7 -90.2 -40.9 -15.2 0.3 -6.2 5 5 A L H 3X S+ 0 0 3 -4,-2.4 4,-2.1 1,-0.3 5,-0.3 0.929 99.8 62.0 -58.7 -44.9 -13.9 -0.4 -2.7 6 6 A E H 3X S+ 0 0 125 -4,-1.1 4,-0.6 1,-0.3 -1,-0.3 0.787 117.1 31.9 -51.0 -27.4 -14.2 -4.1 -3.3 7 7 A K H <> S+ 0 0 138 -3,-1.1 4,-1.3 -4,-0.2 -1,-0.3 0.671 109.5 66.6-101.8 -24.8 -11.6 -3.5 -6.0 8 8 A E H X S+ 0 0 62 -4,-2.5 4,-1.2 2,-0.2 -2,-0.2 0.742 103.6 48.9 -68.4 -22.7 -9.8 -0.6 -4.2 9 9 A V H X S+ 0 0 7 -4,-2.1 4,-3.6 2,-0.2 5,-0.4 0.949 108.6 48.0 -81.0 -54.6 -8.7 -3.1 -1.6 10 10 A A H X S+ 0 0 60 -4,-0.6 4,-0.8 -5,-0.3 -2,-0.2 0.763 109.0 61.1 -56.8 -23.9 -7.3 -5.8 -3.9 11 11 A Q H X S+ 0 0 121 -4,-1.3 4,-0.8 2,-0.2 -1,-0.2 0.969 117.3 24.6 -67.9 -55.3 -5.5 -2.9 -5.7 12 12 A L H >X>S+ 0 0 14 -4,-1.2 4,-3.2 2,-0.2 3,-0.8 0.922 115.5 63.7 -76.5 -46.3 -3.5 -1.8 -2.7 13 13 A E H 3<5S+ 0 0 101 -4,-3.6 4,-0.5 1,-0.3 -1,-0.2 0.788 107.0 47.8 -48.3 -28.2 -3.5 -5.2 -0.9 14 14 A A H 3X5S+ 0 0 61 -4,-0.8 4,-0.6 -5,-0.4 -1,-0.3 0.813 123.3 31.4 -82.6 -32.9 -1.6 -6.4 -3.9 15 15 A E H X S+ 0 0 9 -4,-2.2 4,-4.3 2,-0.2 3,-1.2 0.915 107.2 60.3 -87.2 -52.0 6.4 -3.6 -1.0 20 20 A E H 3X S+ 0 0 107 -4,-2.0 4,-0.7 -5,-0.3 -2,-0.2 0.774 110.3 47.2 -47.3 -28.4 6.1 -4.5 2.7 21 21 A Q H 3< S+ 0 0 84 -4,-1.1 -1,-0.3 2,-0.2 -2,-0.2 0.774 118.6 38.6 -85.1 -29.4 7.9 -7.7 1.7 22 22 A E H X> S+ 0 0 72 -3,-1.2 4,-2.4 -4,-0.5 3,-0.8 0.804 115.0 52.2 -89.0 -34.1 10.6 -6.0 -0.4 23 23 A V H 3X S+ 0 0 6 -4,-4.3 4,-1.4 1,-0.2 -3,-0.2 0.800 96.9 68.3 -71.6 -29.8 11.0 -3.0 1.9 24 24 A A H 3< S+ 0 0 56 -4,-0.7 -1,-0.2 -5,-0.5 -2,-0.1 0.698 115.3 27.7 -62.7 -19.1 11.6 -5.4 4.9 25 25 A Q H X4 S+ 0 0 128 -3,-0.8 3,-0.9 -4,-0.1 -2,-0.2 0.723 114.8 60.8-110.7 -37.1 14.8 -6.4 3.2 26 26 A L H 3< S+ 0 0 56 -4,-2.4 2,-1.3 1,-0.3 3,-0.4 0.978 111.6 37.5 -55.9 -62.7 15.8 -3.3 1.2 27 27 A E T 3< S+ 0 0 63 -4,-1.4 -1,-0.3 1,-0.2 -4,-0.1 -0.410 77.5 131.5 -90.0 59.3 16.1 -0.9 4.2 28 28 A H S < S+ 0 0 154 -2,-1.3 -1,-0.2 -3,-0.9 -2,-0.1 0.903 83.9 24.3 -75.9 -43.4 17.6 -3.5 6.5 29 29 A E 0 0 194 -3,-0.4 -2,-0.1 1,-0.2 -1,-0.1 0.813 360.0 360.0 -90.0 -36.2 20.4 -1.2 7.7 30 30 A G 0 0 86 -4,-0.2 -1,-0.2 27,-0.0 -2,-0.1 -0.354 360.0 360.0 -83.6 360.0 18.7 2.1 7.0 31 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 32 1 B E > 0 0 79 0, 0.0 5,-1.3 0, 0.0 4,-0.5 0.000 360.0 360.0 360.0 -53.4 -17.5 2.8 0.1 33 2 B V T >>5 - 0 0 72 1,-0.3 2,-9.9 2,-0.2 3,-1.4 0.108 360.0 -87.8 -26.5 118.8 -19.5 3.1 3.1 34 3 B Q T 345S+ 0 0 139 1,-0.3 -1,-0.3 3,-0.2 0, 0.0 0.314 119.2 94.0 -27.8 28.6 -17.0 3.4 5.9 35 4 B A T 345S- 0 0 46 -2,-9.9 -1,-0.3 -3,-0.3 -2,-0.2 0.808 112.3 -4.2 -91.2 -43.6 -17.3 -0.3 5.7 36 5 B L T X>5S+ 0 0 28 -3,-1.4 4,-2.5 -4,-0.5 3,-1.7 0.584 127.0 72.9-118.8 -36.6 -14.4 -0.7 3.4 37 6 B K H 3XX S+ 0 0 4 -4,-2.5 3,-1.8 1,-0.3 4,-1.8 0.854 92.8 64.4 -59.8 -35.1 -8.6 1.2 2.3 41 10 B Q T 3< S+ 0 0 124 -4,-0.6 4,-0.4 1,-0.3 -1,-0.3 0.661 97.1 58.8 -62.7 -15.2 -6.9 4.1 4.2 42 11 B A T <4 S+ 0 0 68 -3,-1.8 4,-0.4 3,-0.1 -1,-0.3 0.583 108.1 43.5 -90.1 -12.3 -4.8 1.4 5.9 43 12 B L T <> S+ 0 0 21 -3,-1.8 4,-1.6 -4,-0.4 -2,-0.2 0.868 119.9 35.4 -96.9 -51.1 -3.4 0.0 2.7 44 13 B K H X S+ 0 0 98 -4,-1.8 4,-2.1 3,-0.2 5,-0.2 0.689 106.5 73.1 -77.4 -19.3 -2.5 3.1 0.7 45 14 B A H 4 S+ 0 0 61 -4,-0.4 4,-0.4 -5,-0.4 -1,-0.2 0.972 115.6 17.5 -58.5 -58.3 -1.5 5.0 3.8 46 15 B R H >> S+ 0 0 176 -4,-0.4 4,-2.0 2,-0.2 3,-0.6 0.821 123.3 61.6 -83.7 -34.6 1.8 3.1 4.4 47 16 B N H 3X S+ 0 0 3 -4,-1.6 4,-2.9 1,-0.2 5,-0.3 0.898 98.0 57.6 -58.5 -43.2 2.0 1.7 0.9 48 17 B Y H 3X S+ 0 0 168 -4,-2.1 4,-0.5 1,-0.2 -1,-0.2 0.825 107.7 49.6 -57.9 -32.3 2.2 5.2 -0.6 49 18 B A H X> S+ 0 0 41 -3,-0.6 4,-1.8 -4,-0.4 3,-0.8 0.960 114.4 40.6 -72.5 -53.5 5.3 5.8 1.6 50 19 B L H >X S+ 0 0 7 -4,-2.0 4,-4.5 1,-0.2 3,-0.5 0.967 107.6 61.6 -59.3 -54.2 7.2 2.7 0.7 51 20 B K H 3< S+ 0 0 121 -4,-2.9 4,-0.4 1,-0.3 -1,-0.2 0.755 110.4 44.3 -42.8 -28.6 6.2 2.8 -3.0 52 21 B Q H << S+ 0 0 136 -3,-0.8 4,-0.3 -4,-0.5 -1,-0.3 0.843 122.5 33.5 -86.8 -39.5 8.1 6.2 -2.9 53 22 B K H X S+ 0 0 10 -4,-4.5 4,-1.9 1,-0.3 3,-0.8 0.922 95.5 38.9 -42.2 -62.4 11.3 1.5 -2.3 55 24 B Q H 3> S+ 0 0 113 -4,-0.4 4,-2.5 1,-0.3 5,-0.4 0.809 112.9 59.6 -60.6 -30.0 13.5 2.4 -5.3 56 25 B A H 3> S+ 0 0 41 -4,-0.3 4,-1.4 3,-0.2 -1,-0.3 0.829 106.1 47.7 -68.1 -32.6 15.4 4.8 -3.0 57 26 B L H << S+ 0 0 34 -4,-2.3 -2,-0.2 -3,-0.8 -1,-0.2 0.966 118.0 37.4 -72.7 -55.7 16.3 1.8 -0.8 58 27 B R H < S+ 0 0 152 -4,-1.9 -2,-0.2 -5,-0.2 -3,-0.2 0.907 125.6 41.2 -63.3 -43.4 17.5 -0.6 -3.5 59 28 B H H < S+ 0 0 159 -4,-2.5 2,-0.4 -5,-0.3 -3,-0.2 0.996 117.9 42.9 -67.9 -66.6 19.1 2.3 -5.5 60 29 B K < 0 0 173 -4,-1.4 -1,-0.1 -5,-0.4 0, 0.0 -0.685 360.0 360.0 -86.5 132.8 20.7 4.3 -2.7 61 30 B G 0 0 127 -2,-0.4 -1,-0.1 -3,-0.0 -2,-0.1 0.018 360.0 360.0-166.7 360.0 22.5 2.5 -0.0