==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=13-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 15-JUN-03 1UG8 . COMPND 2 MOLECULE: POLY(A)-SPECIFIC RIBONUCLEASE; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR T.NAGATA,Y.MUTO,N.HAYAMI,H.UDA,M.SHIROUZU,T.TERADA,T.KIGAWA, . 87 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7079.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 52 59.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 12.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 4.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 4.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 32 36.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 122 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -74.9 9.5 -25.8 -7.2 2 2 A S + 0 0 105 1,-0.1 0, 0.0 4,-0.0 0, 0.0 0.981 360.0 90.7 55.9 83.7 7.5 -22.6 -6.7 3 3 A S S > S+ 0 0 96 0, 0.0 4,-2.0 0, 0.0 5,-0.1 0.181 78.6 46.5-164.1 -53.5 4.2 -23.8 -5.4 4 4 A G H > S+ 0 0 58 2,-0.2 4,-1.2 3,-0.2 5,-0.1 0.983 121.9 34.3 -68.2 -60.7 4.2 -24.0 -1.6 5 5 A S H >> S+ 0 0 81 2,-0.2 4,-3.3 1,-0.2 3,-0.5 0.950 119.8 51.6 -59.5 -52.6 5.7 -20.6 -0.9 6 6 A S H 3> S+ 0 0 35 1,-0.3 4,-1.4 2,-0.2 -1,-0.2 0.937 113.5 43.4 -48.9 -56.2 4.1 -19.0 -3.9 7 7 A G H 3X S+ 0 0 34 -4,-2.0 4,-1.0 1,-0.2 -1,-0.3 0.715 113.8 55.2 -63.2 -21.2 0.7 -20.3 -2.8 8 8 A D H X S+ 0 0 9 -4,-1.6 4,-2.1 -3,-0.4 3,-0.6 0.944 102.4 61.4 -67.9 -50.0 -3.6 -7.5 1.6 17 17 A I H 3X S+ 0 0 13 -4,-2.9 4,-3.3 1,-0.3 3,-0.3 0.902 99.3 56.9 -40.5 -56.3 -5.3 -6.8 -1.7 18 18 A E H 3X S+ 0 0 143 -4,-2.0 4,-2.9 1,-0.3 -1,-0.3 0.894 105.7 50.0 -42.2 -52.7 -8.6 -6.7 0.2 19 19 A K H S+ 0 0 28 0, 0.0 4,-1.9 0, 0.0 5,-0.2 -0.370 117.9 50.7 169.0 -78.2 11.6 -8.7 4.7 40 40 A F H >> S+ 0 0 146 1,-0.2 4,-2.0 2,-0.2 3,-0.7 0.956 111.7 49.6 -49.8 -62.9 10.6 -11.3 2.1 41 41 A Q H 3> S+ 0 0 74 1,-0.3 4,-2.6 2,-0.2 -1,-0.2 0.883 106.0 59.1 -43.7 -48.4 6.9 -10.6 2.4 42 42 A R H 3> S+ 0 0 49 1,-0.3 4,-2.1 2,-0.2 -1,-0.3 0.913 105.4 47.7 -47.6 -51.6 7.7 -6.9 2.0 43 43 A K H X S+ 0 0 7 -4,-3.6 4,-4.7 1,-0.2 3,-2.6 0.982 115.0 48.7 -59.3 -62.2 2.5 -7.8 -6.5 49 49 A L H 3X S+ 0 0 6 -4,-3.1 4,-2.3 1,-0.3 -1,-0.2 0.741 97.4 77.6 -50.4 -22.9 1.5 -4.1 -6.4 50 50 A S H 3< S+ 0 0 82 -4,-1.3 -1,-0.3 -5,-0.4 -2,-0.2 0.885 120.5 6.5 -54.5 -42.1 4.2 -3.8 -9.0 51 51 A W H << S+ 0 0 167 -3,-2.6 -2,-0.2 -4,-0.7 -1,-0.2 0.657 128.5 63.9-110.6 -31.7 1.7 -5.3 -11.5 52 52 A K H < S+ 0 0 68 -4,-4.7 -3,-0.3 1,-0.3 -2,-0.2 0.878 130.4 2.4 -60.3 -39.3 -1.3 -5.3 -9.2 53 53 A Y S < S+ 0 0 42 -4,-2.3 -1,-0.3 -5,-0.3 4,-0.2 -0.553 73.2 151.1-152.7 79.4 -1.1 -1.5 -9.1 54 54 A P S S+ 0 0 70 0, 0.0 2,-0.5 0, 0.0 -3,-0.1 0.930 79.0 24.0 -75.1 -49.0 1.7 0.0 -11.2 55 55 A K S S+ 0 0 142 -4,-0.1 23,-0.1 1,-0.1 3,-0.1 -0.981 111.7 48.3-124.5 121.1 -0.1 3.4 -11.8 56 56 A G S S+ 0 0 29 -2,-0.5 20,-2.9 1,-0.4 2,-0.3 -0.092 103.3 46.8 147.0 -37.1 -2.7 4.7 -9.5 57 57 A I E -B 75 0A 19 18,-0.2 2,-0.5 -4,-0.2 -1,-0.4 -0.842 67.3-135.5-128.9 165.4 -1.2 4.3 -6.0 58 58 A H E -B 74 0A 64 16,-1.7 16,-0.8 -2,-0.3 2,-0.4 -0.956 14.9-155.9-128.5 111.8 2.1 5.1 -4.5 59 59 A V E +B 73 0A 33 -2,-0.5 2,-0.3 14,-0.2 14,-0.2 -0.725 20.8 170.1 -88.8 132.1 3.8 2.6 -2.2 60 60 A E E -B 72 0A 56 12,-3.5 12,-3.0 -2,-0.4 2,-0.8 -0.988 32.1-131.3-142.8 149.4 6.2 3.9 0.4 61 61 A T E -B 71 0A 35 -2,-0.3 2,-0.4 10,-0.2 10,-0.2 -0.880 28.2-176.0-106.1 104.9 8.1 2.5 3.4 62 62 A L E -B 70 0A 76 8,-2.0 8,-3.6 -2,-0.8 2,-0.4 -0.798 7.8-158.1-101.8 142.1 7.7 4.8 6.4 63 63 A E + 0 0 126 -2,-0.4 6,-0.2 6,-0.3 2,-0.1 -0.977 19.5 158.0-123.8 132.6 9.5 4.1 9.6 64 64 A T - 0 0 61 -2,-0.4 5,-0.2 1,-0.1 0, 0.0 -0.251 52.3 -82.4-124.7-148.4 8.5 5.4 13.1 65 65 A D S S+ 0 0 161 3,-0.1 4,-0.1 -2,-0.1 -1,-0.1 0.919 119.7 1.9 -90.1 -62.0 9.1 4.5 16.7 66 66 A K S S+ 0 0 184 2,-0.1 3,-0.0 1,-0.1 0, 0.0 0.791 135.6 53.8 -94.7 -37.1 6.5 1.9 17.3 67 67 A K S S+ 0 0 99 1,-0.1 -1,-0.1 3,-0.0 -5,-0.1 0.775 88.5 173.9 -67.5 -26.8 5.1 1.8 13.8 68 68 A E - 0 0 118 1,-0.1 2,-0.7 -5,-0.1 -3,-0.1 0.127 54.1 -12.2 45.2-168.5 8.7 1.2 12.6 69 69 A R S S+ 0 0 117 -6,-0.2 2,-0.4 -5,-0.2 -6,-0.3 -0.458 84.9 161.8 -62.8 105.8 9.3 0.5 9.0 70 70 A H E - B 0 62A 12 -8,-3.6 -8,-2.0 -2,-0.7 2,-0.2 -0.972 42.5-106.4-131.3 145.3 5.8 -0.2 7.6 71 71 A I E - B 0 61A 0 -36,-0.6 -37,-2.7 -2,-0.4 2,-0.4 -0.455 38.0-172.9 -69.9 138.3 4.4 -0.3 4.1 72 72 A V E -AB 33 60A 6 -12,-3.0 -12,-3.5 -39,-0.2 2,-0.3 -1.000 8.7-155.8-138.2 134.5 2.2 2.7 3.3 73 73 A I E -AB 32 59A 1 -41,-3.1 -41,-1.1 -2,-0.4 2,-0.3 -0.761 9.3-165.6-108.4 155.2 0.1 3.4 0.2 74 74 A S E -AB 31 58A 25 -16,-0.8 -16,-1.7 -2,-0.3 2,-0.6 -0.913 29.8 -97.2-136.8 162.4 -1.0 6.7 -1.2 75 75 A K E + B 0 57A 72 -45,-2.0 2,-0.3 -2,-0.3 -18,-0.2 -0.717 47.0 176.6 -84.6 122.0 -3.6 7.9 -3.7 76 76 A V - 0 0 30 -20,-2.9 2,-0.3 -2,-0.6 -18,-0.0 -0.813 14.7-150.9-122.8 163.2 -2.0 8.6 -7.1 77 77 A D > - 0 0 88 -2,-0.3 4,-1.4 1,-0.1 -21,-0.2 -0.916 19.0-132.9-133.1 158.5 -3.3 9.7 -10.5 78 78 A E T 4 S+ 0 0 140 -2,-0.3 -1,-0.1 2,-0.2 -22,-0.1 0.959 105.6 49.5 -73.7 -54.8 -2.3 9.2 -14.1 79 79 A E T 4 S+ 0 0 179 1,-0.2 -1,-0.1 4,-0.0 0, 0.0 0.944 108.8 53.1 -47.9 -60.2 -2.6 12.8 -15.2 80 80 A E T 4 S+ 0 0 159 2,-0.0 -1,-0.2 3,-0.0 -2,-0.2 0.908 93.9 82.3 -40.5 -60.4 -0.5 14.0 -12.3 81 81 A R S < S- 0 0 145 -4,-1.4 -26,-0.0 1,-0.1 -5,-0.0 -0.246 75.1-147.0 -52.1 129.5 2.3 11.6 -13.1 82 82 A S - 0 0 133 1,-0.2 -1,-0.1 0, 0.0 -4,-0.0 0.938 42.1-121.5 -64.6 -49.0 4.5 13.1 -15.8 83 83 A G + 0 0 36 -3,-0.0 -1,-0.2 0, 0.0 2,-0.2 -0.998 60.8 8.7 145.2-144.9 5.2 9.7 -17.3 84 84 A P - 0 0 114 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.506 52.4-148.9 -75.0 139.2 8.3 7.6 -18.0 85 85 A S S S+ 0 0 127 -2,-0.2 0, 0.0 1,-0.1 0, 0.0 0.982 94.8 52.1 -69.2 -60.5 11.6 8.9 -16.6 86 86 A S 0 0 132 1,-0.2 -1,-0.1 0, 0.0 0, 0.0 0.908 360.0 360.0 -39.6 -61.8 13.9 7.6 -19.3 87 87 A G 0 0 102 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.228 360.0 360.0 87.5 360.0 11.8 9.1 -22.0