==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=18-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 02-DEC-03 1UT3 . COMPND 2 MOLECULE: SPHENISCIN-2; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.LANDON,H.LABBE,C.THOUZEAU,P.BULET,F.VOVELLE . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3504.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 55.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 28.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 102 0, 0.0 2,-2.5 0, 0.0 27,-0.2 0.000 360.0 360.0 360.0 146.2 11.2 2.5 0.0 2 2 A F > + 0 0 92 25,-1.8 3,-1.2 1,-0.2 26,-0.1 -0.236 360.0 68.7 72.7 -50.6 8.3 4.5 1.6 3 3 A G T 3 S+ 0 0 64 -2,-2.5 -1,-0.2 1,-0.3 24,-0.0 0.839 90.7 59.1 -66.1 -34.9 9.6 7.7 0.0 4 4 A L T 3 S+ 0 0 155 23,-0.2 -1,-0.3 22,-0.1 2,-0.2 0.504 119.5 25.1 -73.6 -2.4 8.6 6.6 -3.5 5 5 A a S < S+ 0 0 19 -3,-1.2 22,-0.0 22,-0.1 6,-0.0 -0.543 79.2 80.4-137.6-157.7 5.1 6.3 -2.2 6 6 A R + 0 0 141 -2,-0.2 -1,-0.1 27,-0.1 5,-0.0 0.814 61.3 133.4 56.0 30.2 2.7 7.7 0.5 7 7 A L S S+ 0 0 142 -3,-0.1 -1,-0.1 2,-0.0 -2,-0.1 0.956 82.5 5.8 -74.9 -52.8 2.4 10.7 -1.9 8 8 A R S S- 0 0 207 0, 0.0 -3,-0.0 0, 0.0 27,-0.0 0.886 139.1 -46.8 -95.9 -55.4 -1.4 11.0 -1.7 9 9 A R S S+ 0 0 137 2,-0.0 2,-0.6 27,-0.0 27,-0.5 0.060 77.1 155.1-174.2 39.3 -2.4 8.4 0.9 10 10 A G - 0 0 3 25,-0.1 2,-0.4 13,-0.0 25,-0.2 -0.684 25.7-158.7 -81.7 121.2 -0.6 5.2 0.2 11 11 A F E -A 34 0A 48 23,-2.3 23,-1.0 -2,-0.6 2,-0.4 -0.825 18.6-117.9-104.1 139.2 -0.2 3.1 3.4 12 12 A b E -A 33 0A 39 -2,-0.4 2,-0.4 21,-0.2 21,-0.2 -0.596 33.2-171.9 -76.1 126.4 2.4 0.4 3.8 13 13 A A E -A 32 0A 4 19,-3.0 19,-1.8 -2,-0.4 2,-0.4 -0.966 27.4-113.3-123.8 136.8 0.9 -3.0 4.3 14 14 A R S S- 0 0 218 -2,-0.4 2,-0.3 17,-0.2 17,-0.2 -0.534 78.8 -35.4 -70.1 120.4 2.8 -6.2 5.2 15 15 A G S S+ 0 0 29 -2,-0.4 17,-0.7 2,-0.0 -2,-0.2 -0.512 123.3 19.9 71.8-130.1 2.6 -8.7 2.4 16 16 A R S S- 0 0 218 -2,-0.3 -2,-0.0 1,-0.1 18,-0.0 -0.459 88.4-102.6 -76.8 147.0 -0.7 -8.7 0.5 17 17 A c - 0 0 27 -2,-0.1 -1,-0.1 1,-0.1 4,-0.1 -0.306 40.7-102.0 -67.2 150.3 -3.0 -5.8 0.5 18 18 A R > - 0 0 154 2,-0.1 3,-1.3 4,-0.1 -1,-0.1 -0.200 38.8 -96.1 -68.5 163.5 -6.1 -5.9 2.7 19 19 A F T 3 S+ 0 0 204 1,-0.3 2,-1.0 3,-0.0 -1,-0.1 0.922 124.3 42.4 -46.9 -59.1 -9.6 -6.6 1.1 20 20 A P T 3 S+ 0 0 48 0, 0.0 17,-1.0 0, 0.0 2,-0.3 -0.212 106.0 83.8 -86.5 46.9 -10.6 -2.8 0.9 21 21 A S E < -B 36 0A 11 -3,-1.3 15,-0.2 -2,-1.0 13,-0.1 -0.963 63.4-149.9-151.3 130.5 -7.2 -1.8 -0.4 22 22 A I E -B 35 0A 74 13,-3.1 13,-3.4 -2,-0.3 2,-1.9 -0.831 23.1-123.3-104.7 139.2 -5.6 -1.9 -3.8 23 23 A P E +B 34 0A 71 0, 0.0 11,-0.2 0, 0.0 3,-0.1 -0.514 41.0 162.4 -79.5 75.5 -1.8 -2.3 -4.5 24 24 A I E - 0 0 93 -2,-1.9 2,-0.3 9,-0.5 10,-0.1 0.818 70.0 -23.9 -63.8 -30.1 -1.1 0.9 -6.4 25 25 A G E S-B 33 0A 23 8,-0.6 8,-2.9 -3,-0.2 2,-0.5 -0.913 75.4 -82.2-162.9-173.0 2.5 0.4 -5.7 26 26 A R E -B 32 0A 171 6,-0.3 6,-0.3 -2,-0.3 -24,-0.2 -0.921 15.8-165.1-112.0 132.4 5.1 -1.1 -3.4 27 27 A b S S- 0 0 1 4,-1.1 -25,-1.8 -2,-0.5 5,-0.2 0.846 82.8 -24.8 -77.8 -34.6 6.2 0.4 -0.1 28 28 A S S S- 0 0 50 3,-3.1 5,-0.1 -27,-0.2 -26,-0.0 -0.458 95.5 -61.5-146.6-141.9 9.2 -1.9 -0.0 29 29 A R S S+ 0 0 198 -2,-0.2 -1,-0.0 3,-0.1 -2,-0.0 0.952 130.7 5.0 -83.7 -57.5 9.9 -5.3 -1.5 30 30 A F S S+ 0 0 161 2,-0.1 2,-0.5 -4,-0.1 -3,-0.1 0.814 116.5 85.4 -93.3 -38.5 7.2 -7.4 0.2 31 31 A V S S- 0 0 41 -17,-0.2 -3,-3.1 -5,-0.1 -4,-1.1 -0.525 72.4-151.6 -68.6 117.1 5.5 -4.5 1.9 32 32 A Q E -AB 13 26A 49 -19,-1.8 -19,-3.0 -17,-0.7 2,-1.0 -0.505 17.7-125.0 -89.0 160.5 3.0 -3.1 -0.6 33 33 A a E -AB 12 25A 0 -8,-2.9 -8,-0.6 -21,-0.2 -9,-0.5 -0.640 38.2-166.3-104.0 69.1 1.8 0.5 -0.7 34 34 A c E -AB 11 23A 0 -23,-1.0 -23,-2.3 -2,-1.0 2,-0.4 -0.383 4.9-154.1 -63.7 131.0 -1.9 -0.3 -0.5 35 35 A R E - B 0 22A 81 -13,-3.4 -13,-3.1 -25,-0.2 -25,-0.1 -0.872 23.5-107.0-107.7 138.5 -4.2 2.5 -1.4 36 36 A R E - B 0 21A 103 -27,-0.5 -15,-0.2 -2,-0.4 -1,-0.0 -0.255 27.2-173.7 -62.0 150.2 -7.8 2.7 -0.0 37 37 A V 0 0 77 -17,-1.0 -16,-0.1 0, 0.0 -1,-0.1 -0.154 360.0 360.0-139.2 37.8 -10.6 2.0 -2.5 38 38 A W 0 0 249 -18,-0.2 -2,-0.0 0, 0.0 -17,-0.0 -0.603 360.0 360.0 -73.9 360.0 -13.6 2.8 -0.4