==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 14-MAR-07 2UVS . COMPND 2 MOLECULE: POTASSIUM CHANNEL TOXIN ALPHA-KTX 3.1; . SOURCE 2 ORGANISM_SCIENTIFIC: ANDROCTONUS MAURETANICUS; . AUTHOR J.KORUKOTTU,A.LANGE,V.VIJAYAN,R.SCHNEIDER,O.PONGS,S.BECKER, . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3619.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 60.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 23.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 21.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 111 0, 0.0 2,-1.3 0, 0.0 33,-0.0 0.000 360.0 360.0 360.0 77.6 4.2 -0.2 11.0 2 2 A V + 0 0 76 2,-0.0 33,-0.8 35,-0.0 2,-0.3 -0.775 360.0 107.7 -98.0 96.5 4.1 1.5 7.6 3 3 A E E -A 34 0A 97 -2,-1.3 2,-0.4 31,-0.3 31,-0.3 -0.925 51.9-152.0-153.7 156.6 1.0 -0.1 6.4 4 4 A I E -A 33 0A 72 29,-1.0 29,-2.7 -2,-0.3 2,-1.1 -0.994 27.5-109.0-137.8 145.9 -2.4 1.4 5.9 5 5 A N + 0 0 136 -2,-0.4 2,-0.3 27,-0.2 27,-0.2 -0.645 60.9 142.3 -80.9 108.9 -5.8 -0.3 6.1 6 6 A V - 0 0 50 -2,-1.1 2,-0.8 25,-0.0 -2,-0.1 -0.988 58.0-108.0-141.6 145.7 -6.9 -0.3 2.5 7 7 A K + 0 0 196 -2,-0.3 2,-0.3 6,-0.0 24,-0.1 -0.674 52.0 173.3 -78.6 113.9 -8.8 -2.9 0.4 8 8 A a - 0 0 22 -2,-0.8 2,-0.3 21,-0.3 3,-0.1 -0.879 26.3-172.8-126.1 156.2 -6.2 -4.3 -2.0 9 9 A S > - 0 0 90 1,-0.4 4,-0.8 -2,-0.3 5,-0.1 -0.963 67.7 -11.1-143.3 125.0 -5.9 -7.0 -4.5 10 10 A G H > S- 0 0 52 -2,-0.3 4,-0.6 1,-0.1 -1,-0.4 0.086 95.5 -74.0 64.9 167.6 -2.6 -7.9 -6.1 11 11 A S H >> S+ 0 0 87 1,-0.2 3,-1.1 2,-0.2 4,-1.0 0.914 127.2 54.4 -66.1 -45.9 0.4 -5.6 -5.7 12 12 A P H 3> S+ 0 0 71 0, 0.0 4,-1.2 0, 0.0 -1,-0.2 0.760 96.0 65.9 -63.9 -26.7 -0.7 -2.7 -8.0 13 13 A Q H 3< S+ 0 0 105 -4,-0.8 -2,-0.2 1,-0.2 -3,-0.1 0.827 106.5 43.3 -64.7 -31.3 -4.1 -2.2 -6.3 14 14 A b H S+ 0 0 40 0, 0.0 4,-0.9 0, 0.0 -1,-0.2 0.910 115.3 48.6 -56.0 -38.9 -3.6 4.2 -2.5 18 18 A c H <>S+ 0 0 4 -4,-1.8 5,-1.5 1,-0.2 4,-0.4 0.781 101.4 66.3 -72.2 -25.0 0.1 4.9 -1.9 19 19 A K H ><5S+ 0 0 166 -4,-1.1 3,-1.3 -3,-0.5 -1,-0.2 0.947 104.9 41.4 -60.0 -50.0 0.1 7.0 -5.1 20 20 A D H 3<5S+ 0 0 155 -4,-1.5 -1,-0.2 1,-0.3 -2,-0.2 0.729 106.8 66.0 -69.8 -21.2 -2.1 9.6 -3.6 21 21 A A T 3<5S- 0 0 59 -4,-0.9 -1,-0.3 -5,-0.2 -2,-0.2 0.563 106.7-127.0 -77.6 -7.1 -0.1 9.3 -0.3 22 22 A G T < 5 + 0 0 58 -3,-1.3 -3,-0.2 -4,-0.4 2,-0.2 0.684 69.1 117.6 72.0 17.6 2.9 10.7 -2.1 23 23 A M < - 0 0 87 -5,-1.5 2,-0.3 14,-0.1 -1,-0.2 -0.493 57.5-121.9-108.7-179.8 5.2 7.8 -1.1 24 24 A R E +B 36 0A 198 12,-0.9 12,-0.6 -2,-0.2 -5,-0.0 -0.926 63.4 5.9-126.6 152.0 7.1 5.1 -3.1 25 25 A F E + 0 0 161 -2,-0.3 11,-1.9 10,-0.1 2,-0.3 0.488 62.8 164.6 57.7 151.7 7.1 1.3 -3.1 26 26 A G E -B 35 0A 36 9,-0.2 9,-0.3 -3,-0.0 2,-0.2 -0.954 21.2-139.4-173.4-170.9 4.6 -0.9 -1.2 27 27 A K E -B 34 0A 143 7,-2.3 7,-1.9 -2,-0.3 2,-0.2 -0.815 18.0-112.7-152.6-169.3 3.0 -4.3 -0.6 28 28 A a E -B 33 0A 43 5,-0.2 2,-0.3 -2,-0.2 5,-0.2 -0.796 16.1-166.6-132.9 175.3 -0.4 -6.1 0.2 29 29 A M - 0 0 116 3,-0.9 3,-0.4 -2,-0.2 -21,-0.3 -0.979 46.5 -89.2-160.5 155.0 -2.2 -8.1 2.8 30 30 A N S S- 0 0 130 -2,-0.3 3,-0.0 1,-0.3 -1,-0.0 0.748 124.9 -11.9 -35.9 -35.8 -5.3 -10.3 3.3 31 31 A R S S+ 0 0 193 -24,-0.1 2,-0.3 2,-0.0 -1,-0.3 0.146 127.6 75.5-155.5 20.6 -7.2 -7.1 4.1 32 32 A K - 0 0 106 -3,-0.4 -3,-0.9 -27,-0.2 2,-0.3 -0.921 63.4-129.9-137.7 161.6 -4.4 -4.5 4.6 33 33 A b E -AB 4 28A 1 -29,-2.7 -29,-1.0 -2,-0.3 2,-0.4 -0.730 11.0-144.6-109.8 159.5 -1.9 -2.3 2.6 34 34 A H E -AB 3 27A 75 -7,-1.9 -7,-2.3 -31,-0.3 2,-0.3 -0.984 17.6-179.9-126.7 123.1 1.8 -1.8 2.9 35 35 A c E - B 0 26A 12 -33,-0.8 -9,-0.2 -2,-0.4 -10,-0.1 -0.934 14.3-153.1-121.6 146.5 3.5 1.6 2.1 36 36 A T E - B 0 24A 76 -11,-1.9 -12,-0.9 -12,-0.6 2,-0.1 -0.904 11.7-156.0-123.3 106.1 7.3 2.5 2.3 37 37 A P 0 0 59 0, 0.0 -14,-0.1 0, 0.0 -35,-0.0 -0.387 360.0 360.0 -76.1 154.4 8.3 6.1 3.0 38 38 A K 0 0 271 -2,-0.1 -15,-0.0 0, 0.0 0, 0.0 0.947 360.0 360.0 -48.6 360.0 11.7 7.6 2.0