==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-MAR-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN, METAL BINDING PROTEIN 09-DEC-11 3V1A . COMPND 2 MOLECULE: COMPUTATIONAL DESIGN, MID1-APO1; . SOURCE 2 ORGANISM_SCIENTIFIC: ARTIFICIAL GENE; . AUTHOR B.S.DER,M.MACHIUS,M.J.MILEY,B.KUHLMAN . 48 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3885.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 79.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 68.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 -1 A G > 0 0 29 0, 0.0 3,-2.5 0, 0.0 6,-0.3 0.000 360.0 360.0 360.0 179.7 -5.2 -15.3 -5.2 2 0 A S T 3 + 0 0 108 1,-0.3 0, 0.0 5,-0.1 0, 0.0 0.647 360.0 63.4 -64.7 -14.6 -3.8 -12.5 -7.2 3 1 A G T 3 S+ 0 0 78 4,-0.1 -1,-0.3 5,-0.0 3,-0.0 0.373 81.1 117.1 -81.0 1.6 -7.0 -12.4 -9.5 4 2 A S S <> S- 0 0 19 -3,-2.5 4,-1.5 1,-0.1 3,-0.3 -0.441 71.1-136.4 -65.8 136.5 -9.0 -11.5 -6.3 5 3 A P H > S+ 0 0 99 0, 0.0 4,-2.3 0, 0.0 5,-0.2 0.897 108.5 61.5 -57.1 -35.5 -10.8 -8.1 -6.3 6 4 A L H > S+ 0 0 46 1,-0.2 4,-1.9 2,-0.2 5,-0.1 0.892 99.4 53.7 -58.1 -41.6 -9.5 -7.9 -2.8 7 5 A A H > S+ 0 0 13 -6,-0.3 4,-1.8 -3,-0.3 -1,-0.2 0.893 109.7 47.6 -58.3 -41.6 -5.9 -8.0 -4.2 8 6 A Q H X S+ 0 0 88 -4,-1.5 4,-2.3 2,-0.2 -2,-0.2 0.874 106.2 57.5 -69.2 -35.3 -6.7 -5.1 -6.5 9 7 A Q H X S+ 0 0 98 -4,-2.3 4,-2.1 2,-0.2 -2,-0.2 0.905 105.6 51.7 -58.7 -41.6 -8.3 -3.1 -3.6 10 8 A I H X S+ 0 0 13 -4,-1.9 4,-2.4 2,-0.2 -2,-0.2 0.941 108.2 50.5 -60.5 -47.4 -5.0 -3.4 -1.8 11 9 A K H X S+ 0 0 115 -4,-1.8 4,-2.1 1,-0.2 -2,-0.2 0.888 108.2 53.9 -56.4 -39.4 -3.2 -2.1 -4.9 12 10 A N H X S+ 0 0 58 -4,-2.3 4,-2.3 2,-0.2 -1,-0.2 0.897 106.6 50.6 -64.2 -41.4 -5.6 0.8 -5.0 13 11 A I H X S+ 0 0 25 -4,-2.1 4,-2.6 2,-0.2 -2,-0.2 0.929 107.8 53.7 -61.6 -43.5 -4.8 1.7 -1.3 14 12 A H H X S+ 0 0 88 -4,-2.4 4,-2.6 1,-0.2 -2,-0.2 0.913 108.2 50.7 -54.6 -44.4 -1.1 1.6 -2.3 15 13 A S H X S+ 0 0 56 -4,-2.1 4,-2.6 1,-0.2 -1,-0.2 0.921 109.7 49.0 -61.2 -44.8 -1.9 4.1 -5.0 16 14 A F H X S+ 0 0 124 -4,-2.3 4,-2.1 2,-0.2 -1,-0.2 0.870 109.7 53.0 -62.2 -36.3 -3.7 6.4 -2.6 17 15 A I H X S+ 0 0 9 -4,-2.6 4,-2.7 2,-0.2 -2,-0.2 0.941 110.3 47.3 -61.2 -47.8 -0.8 6.2 -0.2 18 16 A H H X S+ 0 0 124 -4,-2.6 4,-2.1 1,-0.2 -2,-0.2 0.929 111.6 50.1 -59.4 -46.8 1.6 7.2 -3.0 19 17 A Q H < S+ 0 0 117 -4,-2.6 4,-0.4 1,-0.2 -1,-0.2 0.874 111.7 48.4 -62.9 -36.6 -0.6 10.1 -4.1 20 18 A A H ><>S+ 0 0 7 -4,-2.1 5,-2.5 1,-0.2 3,-1.3 0.907 109.3 52.4 -70.1 -40.7 -0.9 11.3 -0.5 21 19 A K H ><5S+ 0 0 118 -4,-2.7 3,-1.8 1,-0.3 -2,-0.2 0.876 100.3 63.5 -59.1 -38.9 2.9 11.1 0.0 22 20 A A T 3<5S+ 0 0 76 -4,-2.1 -1,-0.3 1,-0.3 -2,-0.2 0.679 109.0 40.7 -61.9 -20.0 3.3 13.2 -3.1 23 21 A A T < 5S- 0 0 63 -3,-1.3 -1,-0.3 -4,-0.4 -2,-0.2 0.225 116.7-111.1-107.0 7.1 1.5 16.0 -1.3 24 22 A G T < 5 + 0 0 62 -3,-1.8 2,-2.3 1,-0.2 -3,-0.2 0.714 61.2 157.2 73.7 19.9 3.2 15.5 2.0 25 23 A R >< + 0 0 146 -5,-2.5 4,-2.6 1,-0.2 -1,-0.2 -0.428 4.9 161.8 -83.2 70.9 -0.0 14.3 3.6 26 24 A M H > + 0 0 120 -2,-2.3 4,-2.5 1,-0.2 5,-0.2 0.876 65.8 54.8 -69.3 -38.0 1.6 12.4 6.4 27 25 A D H > S+ 0 0 145 -3,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.940 113.7 43.2 -57.9 -47.1 -1.4 12.1 8.7 28 26 A E H > S+ 0 0 98 1,-0.2 4,-3.0 2,-0.2 -1,-0.2 0.898 111.2 54.8 -67.7 -39.9 -3.5 10.5 6.0 29 27 A V H X S+ 0 0 5 -4,-2.6 4,-2.5 1,-0.2 -1,-0.2 0.939 107.2 50.1 -56.2 -47.5 -0.6 8.3 4.8 30 28 A R H X S+ 0 0 130 -4,-2.5 4,-1.5 1,-0.2 -1,-0.2 0.906 113.0 46.3 -62.9 -39.6 -0.2 6.8 8.3 31 29 A T H X S+ 0 0 85 -4,-1.8 4,-2.0 -5,-0.2 -1,-0.2 0.944 112.2 50.1 -65.2 -47.2 -3.9 6.1 8.6 32 30 A L H X S+ 0 0 32 -4,-3.0 4,-3.0 1,-0.2 -2,-0.2 0.834 104.1 59.7 -62.9 -32.7 -4.0 4.5 5.1 33 31 A Q H X S+ 0 0 46 -4,-2.5 4,-2.6 2,-0.2 -1,-0.2 0.920 105.3 48.7 -59.3 -43.5 -1.1 2.3 5.9 34 32 A E H X S+ 0 0 114 -4,-1.5 4,-2.3 -3,-0.2 -2,-0.2 0.934 113.0 47.4 -60.2 -45.5 -3.0 0.8 8.7 35 33 A N H X S+ 0 0 63 -4,-2.0 4,-2.3 2,-0.2 -2,-0.2 0.913 110.7 52.5 -61.9 -43.6 -6.0 0.3 6.4 36 34 A L H X S+ 0 0 9 -4,-3.0 4,-2.5 1,-0.2 -1,-0.2 0.934 111.3 46.7 -52.9 -53.0 -3.7 -1.2 3.8 37 35 A H H X S+ 0 0 97 -4,-2.6 4,-2.4 2,-0.2 -2,-0.2 0.874 108.6 54.6 -64.9 -35.8 -2.3 -3.7 6.3 38 36 A Q H X S+ 0 0 118 -4,-2.3 4,-2.0 2,-0.2 -1,-0.2 0.933 111.2 44.9 -64.0 -43.9 -5.7 -4.7 7.6 39 37 A L H X S+ 0 0 59 -4,-2.3 4,-2.7 1,-0.2 -2,-0.2 0.898 111.9 53.5 -68.6 -37.1 -6.9 -5.6 4.1 40 38 A M H X S+ 0 0 50 -4,-2.5 4,-2.7 -5,-0.2 5,-0.2 0.916 108.1 50.0 -59.4 -43.3 -3.6 -7.4 3.4 41 39 A H H X S+ 0 0 120 -4,-2.4 4,-1.4 2,-0.2 5,-0.2 0.907 111.0 48.2 -68.5 -37.1 -4.1 -9.5 6.5 42 40 A E H X S+ 0 0 91 -4,-2.0 4,-2.6 2,-0.2 3,-0.3 0.951 112.9 49.9 -61.4 -45.7 -7.6 -10.3 5.5 43 41 A Y H < S+ 0 0 40 -4,-2.7 -2,-0.2 1,-0.2 -1,-0.2 0.916 114.4 42.5 -58.6 -47.3 -6.3 -11.3 2.0 44 42 A F H < S+ 0 0 155 -4,-2.7 -1,-0.2 1,-0.2 -2,-0.2 0.650 119.2 44.2 -82.6 -12.0 -3.5 -13.5 3.3 45 43 A Q H < S+ 0 0 136 -4,-1.4 2,-0.4 -3,-0.3 -2,-0.2 0.842 97.0 77.6 -91.0 -42.7 -5.6 -15.2 6.0 46 44 A Q S < S- 0 0 112 -4,-2.6 -1,-0.0 -5,-0.2 -4,-0.0 -0.551 91.8-107.5 -82.4 127.0 -8.8 -15.9 4.1 47 45 A S 0 0 127 -2,-0.4 -1,-0.1 1,-0.1 -2,-0.1 -0.212 360.0 360.0 -61.6 132.6 -8.6 -18.9 1.8 48 46 A D 0 0 154 -4,-0.1 -1,-0.1 -5,-0.0 -4,-0.0 -0.389 360.0 360.0-167.7 360.0 -8.5 -18.2 -1.9