==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 16-DEC-03 1V7F . COMPND 2 MOLECULE: PHRIXOTOXIN 1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR B.CHAGOT,P.ESCOUBAS,E.VILLEGAS,C.BERNARD,G.FERRAT,G.CORZO, . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2784.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 65.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 17.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 24.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Y 0 0 225 0, 0.0 3,-0.2 0, 0.0 15,-0.1 0.000 360.0 360.0 360.0 150.1 -10.0 5.5 2.9 2 2 A a - 0 0 33 1,-0.2 2,-0.4 13,-0.1 13,-0.2 0.154 360.0 -62.4 -51.1 177.0 -7.8 3.0 1.1 3 3 A Q B -a 15 0A 12 11,-1.8 13,-2.1 1,-0.1 -1,-0.2 -0.524 59.6-146.5 -70.3 123.1 -4.5 1.8 2.6 4 4 A K > - 0 0 108 -2,-0.4 3,-1.9 1,-0.2 21,-0.2 -0.065 41.4 -49.4 -79.8-175.4 -2.1 4.8 3.0 5 5 A W T 3 S+ 0 0 157 1,-0.3 -1,-0.2 10,-0.1 21,-0.1 -0.334 128.3 8.8 -59.6 131.5 1.7 4.9 2.7 6 6 A M T 3 S+ 0 0 141 19,-2.1 -1,-0.3 1,-0.2 20,-0.1 0.633 101.5 134.4 72.5 15.1 3.4 2.1 4.7 7 7 A W < - 0 0 112 -3,-1.9 18,-3.0 18,-0.3 -1,-0.2 -0.352 61.5 -82.4 -89.7 173.9 0.0 0.5 5.5 8 8 A T B -B 24 0B 90 16,-0.2 16,-0.2 -2,-0.1 2,-0.2 -0.236 40.8-175.6 -71.4 163.6 -0.9 -3.2 5.3 9 9 A b - 0 0 2 14,-1.8 14,-0.4 15,-0.1 11,-0.0 -0.751 10.7-150.8-166.3 112.7 -1.9 -4.9 2.1 10 10 A D > - 0 0 99 -2,-0.2 3,-0.8 12,-0.1 13,-0.6 0.118 57.7 -62.7 -70.2-169.4 -3.1 -8.5 1.6 11 11 A S T 3 S- 0 0 130 1,-0.3 -1,-0.1 11,-0.1 10,-0.1 0.770 133.7 -6.8 -48.5 -27.7 -2.6 -10.7 -1.5 12 12 A A T 3 S+ 0 0 64 11,-0.1 -1,-0.3 10,-0.0 10,-0.1 -0.083 90.2 157.1-166.7 52.0 -4.7 -8.0 -3.3 13 13 A R < - 0 0 95 -3,-0.8 2,-0.7 8,-0.2 8,-0.1 0.114 52.1 -90.2 -69.1-169.9 -6.1 -5.5 -0.8 14 14 A K + 0 0 156 0, 0.0 -11,-1.8 0, 0.0 2,-0.1 -0.807 52.3 170.9-112.8 92.2 -7.2 -2.0 -1.8 15 15 A c B -a 3 0A 32 -2,-0.7 -11,-0.2 -13,-0.2 -13,-0.1 -0.451 33.6-100.6 -93.4 169.2 -4.3 0.5 -1.5 16 16 A a > - 0 0 18 -13,-2.1 3,-1.1 1,-0.2 -1,-0.1 -0.357 51.2 -72.7 -85.4 168.0 -4.2 4.1 -2.6 17 17 A E T 3 S+ 0 0 177 1,-0.2 -1,-0.2 -2,-0.1 3,-0.1 -0.200 116.9 32.0 -58.9 149.5 -2.6 5.5 -5.8 18 18 A G T 3 S+ 0 0 54 1,-0.3 2,-0.3 -3,-0.1 10,-0.3 0.558 103.3 100.2 79.3 7.7 1.2 5.6 -5.8 19 19 A L < - 0 0 32 -3,-1.1 2,-0.5 8,-0.2 -1,-0.3 -0.885 65.5-133.3-125.9 157.7 1.4 2.5 -3.6 20 20 A V E -C 26 0C 45 6,-1.2 6,-1.7 -2,-0.3 2,-1.1 -0.932 8.8-144.3-113.3 129.8 2.1 -1.2 -4.2 21 21 A b E +C 25 0C 31 -2,-0.5 2,-1.0 4,-0.2 -8,-0.2 -0.271 55.0 131.8 -87.2 51.7 -0.1 -3.9 -2.6 22 22 A R S S- 0 0 188 -2,-1.1 2,-2.4 2,-0.7 -11,-0.1 -0.727 97.2 -58.4-103.9 80.6 2.8 -6.3 -2.1 23 23 A L S S+ 0 0 107 -2,-1.0 -14,-1.8 -13,-0.6 2,-0.4 -0.366 134.1 29.8 79.4 -58.9 2.3 -7.3 1.5 24 24 A W B S-B 8 0B 148 -2,-2.4 2,-1.6 -16,-0.2 -2,-0.7 -0.977 100.1 -95.6-132.6 144.5 2.6 -3.7 2.5 25 25 A c E -C 21 0C 1 -18,-3.0 -19,-2.1 -2,-0.4 2,-0.6 -0.367 47.2-160.9 -59.9 88.1 1.7 -0.5 0.7 26 26 A K E -C 20 0C 94 -6,-1.7 2,-1.4 -2,-1.6 -6,-1.2 -0.642 8.9-148.5 -78.6 118.6 5.2 0.2 -0.7 27 27 A K + 0 0 120 -2,-0.6 2,-0.3 -8,-0.2 -8,-0.2 -0.650 56.2 103.5 -89.5 83.2 5.5 3.9 -1.7 28 28 A I 0 0 92 -2,-1.4 -2,-0.1 -10,-0.3 -10,-0.0 -0.984 360.0 360.0-160.2 150.4 8.0 3.6 -4.6 29 29 A I 0 0 221 -2,-0.3 -9,-0.0 -9,-0.0 -2,-0.0 -0.394 360.0 360.0 -75.8 360.0 8.1 3.7 -8.4