==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 31-MAR-04 1VEG . COMPND 2 MOLECULE: NEDD8 ULTIMATE BUSTER-1; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR T.ABE,H.HIROTA,K.IZUMI,M.YOSHIDA,T.YAMAZAKI,S.YOKOYAMA, . 83 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7074.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 44 53.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 8.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 9.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 25 30.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 138 0, 0.0 2,-0.3 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0-146.6 14.6 3.2 -12.0 2 2 A S - 0 0 104 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.995 360.0 -79.3-149.2 143.9 13.3 4.3 -15.4 3 3 A S - 0 0 123 -2,-0.3 2,-0.4 1,-0.1 0, 0.0 -0.035 45.7-165.0 -40.5 138.1 11.3 7.2 -16.6 4 4 A G + 0 0 43 3,-0.0 2,-0.1 1,-0.0 -1,-0.1 -0.902 36.0 117.5-138.6 106.9 7.6 6.7 -15.9 5 5 A S S S- 0 0 119 -2,-0.4 -2,-0.0 1,-0.2 -1,-0.0 -0.464 82.1 -29.3-170.5 88.0 5.0 8.9 -17.6 6 6 A S S S+ 0 0 134 2,-0.1 -1,-0.2 -2,-0.1 0, 0.0 0.778 85.0 113.9 65.6 117.8 2.4 7.3 -19.9 7 7 A G + 0 0 75 1,-0.6 -3,-0.0 -3,-0.1 -1,-0.0 -0.062 57.9 54.9-169.7 -75.6 3.5 4.1 -21.7 8 8 A N S S- 0 0 157 1,-0.1 -1,-0.6 2,-0.0 2,-0.2 -0.580 85.0-109.0 -82.9 144.0 1.8 0.8 -20.9 9 9 A P - 0 0 86 0, 0.0 -1,-0.1 0, 0.0 3,-0.0 -0.528 16.4-130.7 -75.0 135.8 -2.0 0.6 -21.1 10 10 A H + 0 0 111 -2,-0.2 -2,-0.0 1,-0.0 0, 0.0 0.845 48.8 176.5 -51.4 -36.5 -3.8 0.3 -17.8 11 11 A M + 0 0 130 1,-0.0 -3,-0.0 0, 0.0 -1,-0.0 0.218 44.4 73.7 51.1 177.3 -5.6 -2.6 -19.4 12 12 A W + 0 0 112 1,-0.0 3,-0.1 -3,-0.0 -1,-0.0 0.953 57.4 177.7 44.5 74.1 -8.1 -4.7 -17.4 13 13 A W - 0 0 205 1,-0.1 2,-0.2 0, 0.0 -1,-0.0 0.998 56.2 -41.4 -67.3 -68.9 -10.8 -2.1 -17.5 14 14 A L S S+ 0 0 118 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 -0.399 91.6 84.4-136.2-147.8 -13.5 -4.0 -15.7 15 15 A Q + 0 0 149 -2,-0.2 0, 0.0 -3,-0.1 0, 0.0 0.346 69.5 62.9 57.8 160.5 -15.0 -7.5 -15.6 16 16 A D - 0 0 109 2,-0.1 0, 0.0 3,-0.0 0, 0.0 0.918 59.2-162.6 53.4 100.0 -13.5 -10.3 -13.5 17 17 A A S S+ 0 0 85 1,-0.3 -1,-0.0 2,-0.1 0, 0.0 0.985 79.0 8.4 -73.4 -64.0 -13.7 -9.3 -9.9 18 18 A D + 0 0 117 1,-0.2 -1,-0.3 3,-0.0 3,-0.2 -0.897 64.9 166.6-126.0 100.1 -11.2 -11.6 -8.4 19 19 A P S S- 0 0 84 0, 0.0 -1,-0.2 0, 0.0 2,-0.2 0.945 81.5 -13.4 -75.0 -52.2 -9.2 -13.6 -10.9 20 20 A E S S+ 0 0 155 2,-0.0 2,-0.5 0, 0.0 -2,-0.0 -0.616 74.2 154.0-156.8 88.3 -6.5 -14.9 -8.6 21 21 A N + 0 0 88 -3,-0.2 2,-0.3 -2,-0.2 -3,-0.0 -0.878 18.9 148.1-123.0 97.0 -6.3 -13.4 -5.1 22 22 A N - 0 0 127 -2,-0.5 2,-2.1 2,-0.2 -2,-0.0 -0.897 58.1-103.0-127.7 156.9 -4.8 -15.7 -2.6 23 23 A S S S+ 0 0 133 -2,-0.3 2,-0.3 2,-0.0 -2,-0.0 -0.530 79.2 115.9 -79.6 76.2 -2.7 -15.2 0.5 24 24 A R S S- 0 0 190 -2,-2.1 -2,-0.2 2,-0.0 0, 0.0 -0.987 77.5 -91.6-148.8 135.2 0.6 -16.3 -1.1 25 25 A Q S S+ 0 0 162 -2,-0.3 2,-0.3 0, 0.0 30,-0.1 -0.201 74.1 119.8 -46.7 119.4 3.8 -14.5 -1.8 26 26 A A - 0 0 71 28,-0.2 -2,-0.0 1,-0.0 0, 0.0 -0.964 65.4 -52.3-173.5 168.0 3.5 -13.1 -5.3 27 27 A S - 0 0 100 -2,-0.3 28,-0.0 1,-0.1 -1,-0.0 0.042 67.3 -94.0 -46.8 161.3 3.4 -9.9 -7.4 28 28 A P - 0 0 29 0, 0.0 2,-0.4 0, 0.0 -1,-0.1 -0.158 37.1-110.5 -75.0 173.5 1.1 -7.1 -6.2 29 29 A S > - 0 0 33 1,-0.1 4,-2.3 26,-0.1 5,-0.3 -0.875 19.6-119.6-110.9 141.8 -2.4 -6.5 -7.5 30 30 A Q H >> S+ 0 0 91 -2,-0.4 4,-3.9 1,-0.2 3,-0.6 0.892 116.9 48.0 -38.6 -58.6 -3.5 -3.6 -9.7 31 31 A E H 3> S+ 0 0 82 1,-0.3 4,-4.9 2,-0.3 5,-0.4 0.940 107.5 54.1 -49.0 -57.4 -5.9 -2.5 -7.0 32 32 A S H 3> S+ 0 0 29 1,-0.3 4,-0.6 2,-0.2 -1,-0.3 0.831 116.2 41.1 -46.8 -36.4 -3.3 -2.8 -4.3 33 33 A I H X S+ 0 0 0 -4,-0.6 4,-1.4 -5,-0.4 3,-0.8 0.951 103.4 55.3 -75.0 -53.3 -1.6 3.1 -3.2 37 37 A V H 3< S+ 0 0 52 -4,-2.6 4,-0.5 1,-0.3 3,-0.3 0.849 102.8 61.3 -47.0 -38.4 -1.5 5.8 -5.9 38 38 A Y H 3< S+ 0 0 183 -4,-1.8 -1,-0.3 1,-0.3 -2,-0.2 0.930 98.9 52.8 -54.8 -51.0 -4.6 7.1 -4.2 39 39 A M H << S- 0 0 92 -4,-1.0 -1,-0.3 -3,-0.8 -2,-0.2 0.822 134.7 -87.8 -54.6 -33.8 -2.7 7.8 -1.0 40 40 A G S < S+ 0 0 47 -4,-1.4 2,-0.4 -3,-0.3 -3,-0.2 0.666 83.5 127.9 122.1 57.5 -0.2 9.7 -3.1 41 41 A F - 0 0 15 -4,-0.5 5,-0.3 -5,-0.3 -1,-0.2 -0.933 62.5-109.5-145.1 116.7 2.5 7.4 -4.5 42 42 A D >> - 0 0 116 -2,-0.4 4,-2.5 1,-0.1 3,-1.0 -0.113 33.7-118.2 -43.0 130.6 3.5 7.0 -8.1 43 43 A T H 3> S+ 0 0 59 1,-0.3 4,-3.8 2,-0.2 5,-0.4 0.880 117.0 55.3 -37.6 -56.2 2.2 3.7 -9.4 44 44 A V H 3> S+ 0 0 88 1,-0.3 4,-3.5 2,-0.2 -1,-0.3 0.898 110.1 46.0 -45.2 -49.1 5.8 2.6 -10.0 45 45 A V H <> S+ 0 0 36 -3,-1.0 4,-3.4 2,-0.2 -1,-0.3 0.882 112.8 51.2 -62.3 -39.7 6.5 3.4 -6.4 46 46 A A H X S+ 0 0 0 -4,-2.5 4,-2.9 -5,-0.3 -2,-0.2 0.946 115.0 41.1 -62.2 -50.5 3.4 1.6 -5.4 47 47 A E H X S+ 0 0 71 -4,-3.8 4,-1.6 1,-0.2 -2,-0.2 0.891 119.1 46.2 -64.2 -41.3 4.4 -1.5 -7.4 48 48 A A H X S+ 0 0 37 -4,-3.5 4,-2.1 -5,-0.4 -2,-0.2 0.871 113.4 51.0 -68.4 -38.1 8.0 -1.1 -6.3 49 49 A A H >X S+ 0 0 0 -4,-3.4 4,-2.3 2,-0.2 3,-0.7 0.990 107.4 49.4 -61.7 -63.5 6.8 -0.6 -2.7 50 50 A L H 3< S+ 0 0 0 -4,-2.9 6,-0.4 1,-0.3 -1,-0.2 0.852 112.7 51.4 -43.1 -41.1 4.6 -3.7 -2.6 51 51 A R H >< S+ 0 0 186 -4,-1.6 3,-1.3 -5,-0.2 -1,-0.3 0.895 107.6 52.0 -64.4 -42.0 7.6 -5.5 -4.0 52 52 A V H << S+ 0 0 58 -4,-2.1 2,-0.5 -3,-0.7 -2,-0.2 0.971 115.8 38.9 -58.1 -58.0 9.8 -4.1 -1.2 53 53 A F T >< S- 0 0 42 -4,-2.3 2,-3.5 3,-0.1 3,-0.9 -0.174 122.5-104.6 -87.1 41.0 7.4 -5.2 1.6 54 54 A G T < S- 0 0 56 -3,-1.3 -28,-0.2 -2,-0.5 -1,-0.1 -0.279 81.8 -46.0 70.6 -57.8 6.7 -8.4 -0.3 55 55 A G T 3 S+ 0 0 32 -2,-3.5 2,-0.7 -30,-0.1 -1,-0.2 0.277 88.8 144.4 161.6 42.3 3.3 -7.1 -1.3 56 56 A N <> - 0 0 83 -3,-0.9 4,-2.6 -6,-0.4 5,-0.2 -0.897 34.9-159.7-104.4 115.3 1.6 -5.5 1.7 57 57 A V H > S+ 0 0 49 -2,-0.7 4,-2.5 2,-0.2 -1,-0.2 0.885 97.0 43.0 -56.9 -40.8 -0.5 -2.5 0.8 58 58 A Q H > S+ 0 0 142 2,-0.2 4,-4.2 1,-0.2 5,-0.4 0.992 110.3 51.4 -68.2 -64.6 -0.2 -1.5 4.4 59 59 A L H > S+ 0 0 74 1,-0.2 4,-0.9 2,-0.2 -2,-0.2 0.854 114.7 48.0 -39.3 -44.9 3.4 -2.2 5.1 60 60 A A H >X S+ 0 0 0 -4,-2.6 4,-4.7 2,-0.2 3,-1.3 0.980 116.6 39.9 -61.6 -59.6 4.0 -0.1 2.0 61 61 A A H 3X>S+ 0 0 12 -4,-2.5 4,-4.7 1,-0.3 5,-0.7 0.951 105.5 65.4 -53.9 -54.9 1.8 2.7 3.1 62 62 A Q H 3X5S+ 0 0 128 -4,-4.2 4,-0.7 1,-0.2 -1,-0.3 0.774 120.5 25.3 -38.0 -32.2 3.0 2.5 6.6 63 63 A T H S+ 0 0 35 -3,-1.3 4,-3.6 -4,-0.9 5,-0.6 0.846 119.1 55.3 -99.3 -51.8 6.3 3.5 5.1 64 64 A L H X>S+ 0 0 0 -4,-4.7 4,-2.2 1,-0.2 5,-1.8 0.854 118.0 40.5 -50.0 -38.1 5.2 5.4 2.0 65 65 A A H <5S+ 0 0 58 -4,-4.7 -1,-0.2 -5,-0.3 -3,-0.2 0.978 113.6 50.0 -74.4 -61.3 3.2 7.5 4.3 66 66 A H H < - 0 0 24 0, 0.0 3,-1.0 0, 0.0 4,-0.3 -0.604 42.7-164.5 -75.0 117.8 13.3 4.1 2.6 73 73 A P T 3 S+ 0 0 41 0, 0.0 6,-0.1 0, 0.0 3,-0.1 0.616 94.3 41.5 -75.0 -13.3 16.8 5.0 1.2 74 74 A D T 3 S+ 0 0 145 1,-0.1 3,-0.1 7,-0.1 7,-0.1 -0.260 80.4 109.1-126.7 43.0 18.3 2.9 4.0 75 75 A L S < S+ 0 0 85 -3,-1.0 2,-0.5 5,-0.3 -1,-0.1 0.828 81.0 41.5 -85.5 -37.2 15.8 -0.0 3.9 76 76 A Q S S- 0 0 106 4,-0.3 3,-0.5 -4,-0.3 -1,-0.3 -0.960 75.9-142.4-118.3 117.8 18.3 -2.5 2.4 77 77 A F S S+ 0 0 226 -2,-0.5 2,-0.6 1,-0.3 -1,-0.2 0.880 99.5 20.6 -37.5 -57.6 21.9 -2.5 3.7 78 78 A S S S+ 0 0 104 -3,-0.1 -1,-0.3 -4,-0.0 -4,-0.0 -0.883 110.2 67.5-122.7 97.8 23.2 -3.1 0.2 79 79 A G S S- 0 0 43 -2,-0.6 2,-0.2 -3,-0.5 -2,-0.0 -0.799 85.7 -8.8-170.5-147.8 20.7 -2.2 -2.5 80 80 A P + 0 0 106 0, 0.0 -4,-0.3 0, 0.0 -5,-0.3 -0.519 63.3 150.1 -75.0 137.2 18.9 0.8 -4.2 81 81 A S - 0 0 75 -2,-0.2 -7,-0.1 1,-0.1 -2,-0.0 -0.855 42.7-145.6-169.6 131.0 19.3 4.1 -2.5 82 82 A S 0 0 125 -2,-0.3 -1,-0.1 1,-0.1 0, 0.0 0.974 360.0 360.0 -61.8 -58.2 19.4 7.7 -3.6 83 83 A G 0 0 113 0, 0.0 -1,-0.1 0, 0.0 -9,-0.0 -0.189 360.0 360.0 48.4 360.0 22.0 8.9 -1.1