==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 25-NOV-96 1VIB . COMPND 2 MOLECULE: NEUROTOXIN B-IV; . SOURCE 2 ORGANISM_SCIENTIFIC: CEREBRATULUS LACTEUS; . AUTHOR K.J.BARNHAM,T.R.DYKE,W.R.KEM,R.S.NORTON . 55 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4051.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 49 89.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 10.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 15 27.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 43.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 134 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -43.5 -5.0 -0.1 -11.2 2 2 A S + 0 0 110 3,-0.0 2,-2.1 0, 0.0 0, 0.0 0.365 360.0 53.0-145.4 -62.6 -3.7 3.1 -9.5 3 3 A A + 0 0 65 1,-0.1 2,-0.8 2,-0.0 51,-0.1 -0.417 68.6 144.4 -85.8 66.3 -6.3 5.2 -7.7 4 4 A T + 0 0 98 -2,-2.1 2,-0.2 -3,-0.1 -1,-0.1 -0.592 27.9 113.6-106.3 70.7 -7.5 2.3 -5.7 5 5 A W + 0 0 170 -2,-0.8 49,-0.0 1,-0.1 48,-0.0 -0.708 20.9 88.7-128.2 179.8 -8.5 3.8 -2.3 6 6 A G S > S+ 0 0 17 -2,-0.2 4,-0.6 46,-0.1 -1,-0.1 -0.046 76.9 77.3 118.3 -31.0 -11.6 4.5 -0.2 7 7 A A T 4 S+ 0 0 93 2,-0.2 4,-0.1 1,-0.1 -2,-0.1 0.363 93.3 56.5 -90.2 4.5 -11.8 1.2 1.8 8 8 A A T 4 S+ 0 0 68 2,-0.1 -1,-0.1 1,-0.0 3,-0.1 0.814 122.4 18.8-100.5 -44.4 -9.0 2.5 4.1 9 9 A Y T >4 S+ 0 0 52 1,-0.1 3,-2.5 43,-0.1 4,-0.4 0.329 80.7 132.5-101.3 9.4 -10.6 5.9 5.2 10 10 A X T >X + 0 0 58 -4,-0.6 4,-2.9 1,-0.3 3,-2.5 0.717 69.7 58.0 -49.0 -45.8 -14.3 5.2 4.5 11 11 A A H 3> S+ 0 0 64 1,-0.3 4,-3.4 2,-0.2 -1,-0.3 0.884 91.6 71.6 -40.8 -54.1 -15.5 6.4 7.8 12 12 A a H <4 S+ 0 0 41 -3,-2.5 -1,-0.3 1,-0.2 -2,-0.2 0.676 115.9 23.4 -36.4 -32.4 -13.9 9.8 7.2 13 13 A E H X> S+ 0 0 5 -3,-2.5 3,-1.5 -4,-0.4 4,-1.1 0.715 115.4 63.0-107.1 -43.7 -16.6 10.4 4.6 14 14 A N H >X S+ 0 0 70 -4,-2.9 4,-2.6 1,-0.3 3,-0.7 0.875 94.1 67.5 -52.2 -36.1 -19.4 8.1 5.8 15 15 A N H 3X S+ 0 0 75 -4,-3.4 4,-2.7 1,-0.3 -1,-0.3 0.867 102.8 44.6 -52.9 -39.3 -19.4 10.3 9.0 16 16 A b H <> S+ 0 0 19 -3,-1.5 4,-3.1 -5,-0.3 29,-0.5 0.678 105.8 60.8 -81.9 -18.7 -20.7 13.1 6.9 17 17 A R H X S+ 0 0 146 -4,-2.6 4,-1.7 2,-0.2 3,-0.8 0.990 117.4 54.2 -59.7 -57.8 -24.8 10.2 8.5 19 19 A K H >X S+ 0 0 101 -4,-2.7 3,-1.0 -5,-0.3 4,-0.9 0.891 105.2 52.1 -39.7 -56.5 -24.2 13.8 9.5 20 20 A Y H 3X S+ 0 0 43 -4,-3.1 4,-0.9 1,-0.3 3,-0.5 0.899 116.4 41.1 -49.2 -42.9 -26.0 15.2 6.4 21 21 A D H << S+ 0 0 78 -4,-1.8 -1,-0.3 -3,-0.8 -2,-0.3 0.642 117.2 47.7 -81.8 -15.8 -28.9 13.0 7.3 22 22 A L H << S+ 0 0 102 -4,-1.7 -2,-0.2 -3,-1.0 -1,-0.2 0.312 109.8 56.2-104.8 4.9 -28.5 13.8 11.0 23 23 A c H < S+ 0 0 20 -4,-0.9 2,-2.9 -3,-0.5 -2,-0.2 0.597 75.0 96.4-108.3 -22.1 -28.2 17.6 10.1 24 24 A I < + 0 0 29 -4,-0.9 2,-1.3 -5,-0.3 3,-0.2 -0.343 39.1 154.6 -74.1 72.9 -31.5 18.0 8.3 25 25 A R > + 0 0 87 -2,-2.9 5,-2.5 1,-0.2 -1,-0.1 -0.457 6.2 162.5 -97.2 61.5 -33.4 19.4 11.3 26 26 A d T 5 + 0 0 9 -2,-1.3 6,-0.9 3,-0.2 8,-0.4 0.676 60.7 67.8 -57.0 -14.6 -35.7 21.1 8.9 27 27 A Q T > 5S- 0 0 120 -3,-0.2 2,-1.6 4,-0.2 3,-0.8 -0.795 118.3 -16.2-106.9 149.4 -37.9 21.3 11.9 28 28 A G G > 5S+ 0 0 62 -2,-0.3 3,-2.5 1,-0.3 -2,-0.1 -0.394 138.9 47.7 61.2 -90.8 -37.2 23.4 15.0 29 29 A K G 3 5S+ 0 0 166 -2,-1.6 -1,-0.3 1,-0.3 -3,-0.2 0.885 128.2 28.0 -45.1 -50.2 -33.5 23.9 14.3 30 30 A W G X> + 0 0 130 -3,-1.4 3,-2.9 1,-0.2 4,-1.9 0.408 46.5 122.1 -79.9 4.9 -35.0 27.2 6.8 34 34 A R H 3X + 0 0 148 -4,-0.8 4,-2.0 -8,-0.4 3,-0.4 0.831 60.7 64.0 -29.3 -65.1 -36.2 23.9 5.2 35 35 A G H 3> S+ 0 0 67 -3,-0.5 4,-0.7 1,-0.3 -1,-0.3 0.749 119.4 27.1 -35.6 -33.7 -35.1 25.0 1.6 36 36 A K H <> S+ 0 0 119 -3,-2.9 4,-2.0 2,-0.2 5,-0.6 0.660 102.0 79.9-107.4 -23.2 -31.5 25.0 3.0 37 37 A d H X S+ 0 0 0 -4,-1.9 4,-0.9 -3,-0.4 -2,-0.2 0.895 108.5 37.9 -50.3 -35.8 -31.9 22.4 5.8 38 38 A A H >X S+ 0 0 35 -4,-2.0 4,-2.4 -5,-0.2 3,-1.0 0.957 120.2 38.1 -76.8 -85.3 -31.5 20.2 2.9 39 39 A A H 3X S+ 0 0 45 -4,-0.7 4,-2.6 1,-0.3 5,-0.2 0.839 117.1 54.9 -29.8 -58.7 -29.0 21.7 0.5 40 40 A H H 3< S+ 0 0 82 -4,-2.0 4,-0.4 1,-0.3 -1,-0.3 0.897 111.7 42.0 -44.8 -54.4 -26.9 22.9 3.4 41 41 A c H XX S+ 0 0 0 -3,-1.0 4,-1.1 -4,-0.9 3,-1.0 0.834 110.3 56.9 -69.0 -33.1 -26.7 19.4 4.9 42 42 A I H 3X S+ 0 0 65 -4,-2.4 4,-2.0 1,-0.3 5,-0.2 0.940 97.2 62.0 -66.4 -40.6 -26.1 17.7 1.6 43 43 A I H 3X S+ 0 0 77 -4,-2.6 4,-2.0 -5,-0.2 -1,-0.3 0.716 100.0 59.9 -57.1 -15.6 -23.0 19.9 0.9 44 44 A Q H X> S+ 0 0 49 -3,-1.0 4,-2.6 -4,-0.4 3,-0.7 0.986 103.8 43.6 -75.2 -66.9 -21.5 18.3 4.0 45 45 A K H 3X S+ 0 0 22 -4,-1.1 4,-1.0 -29,-0.5 -2,-0.2 0.820 121.1 47.4 -42.7 -34.5 -21.7 14.6 2.9 46 46 A N H 3< S+ 0 0 65 -4,-2.0 4,-0.3 2,-0.2 -1,-0.3 0.835 106.9 51.1 -80.7 -36.9 -20.3 16.0 -0.4 47 47 A N H X< S+ 0 0 106 -4,-2.0 3,-2.4 -3,-0.7 4,-0.4 0.946 107.1 58.0 -64.8 -43.3 -17.5 18.3 0.9 48 48 A b H >X>S+ 0 0 2 -4,-2.6 4,-2.6 1,-0.3 3,-2.4 0.894 94.3 64.3 -48.7 -47.7 -16.3 15.2 2.9 49 49 A K T 3<5S+ 0 0 76 -4,-1.0 -1,-0.3 -5,-0.3 4,-0.2 0.644 103.4 49.5 -56.2 -13.6 -16.0 13.3 -0.4 50 50 A G T <45S+ 0 0 65 -3,-2.4 -1,-0.3 -4,-0.3 -2,-0.2 0.470 111.8 46.7-104.4 -5.6 -13.3 15.8 -1.4 51 51 A K T <45S+ 0 0 146 -3,-2.4 -2,-0.2 -4,-0.4 -3,-0.1 0.719 127.5 24.5-103.7 -32.9 -11.4 15.5 1.9 52 52 A a T <5S+ 0 0 12 -4,-2.6 2,-0.2 -42,-0.1 -3,-0.2 0.808 122.5 47.4-100.8 -39.7 -11.3 11.7 2.1 53 53 A K < - 0 0 71 -5,-0.5 -47,-0.0 -4,-0.2 0, 0.0 -0.580 60.9-149.3-101.9 166.0 -11.7 10.6 -1.6 54 54 A K 0 0 120 -2,-0.2 -4,-0.1 -51,-0.1 -1,-0.1 0.388 360.0 360.0-110.5 -2.8 -9.9 11.8 -4.7 55 55 A E 0 0 142 -6,-0.2 -5,-0.1 -52,-0.0 -6,-0.1 0.573 360.0 360.0-133.4 360.0 -12.8 11.3 -7.1