==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RIBONUCLEOPROTEIN 29-NOV-95 1VIH . COMPND 2 MOLECULE: VIGILIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR G.MUSCO,G.STIER,C.JOSEPH,M.A.C.MORELLI,M.NILGES,T.J.GIBSON, . 71 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5763.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 46 64.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 16.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 7.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 4.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 29.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 6 A I 0 0 179 0, 0.0 2,-2.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 153.7 -21.3 -9.1 3.6 2 7 A N + 0 0 99 53,-0.0 3,-0.1 2,-0.0 0, 0.0 -0.318 360.0 164.2 79.5 -54.5 -19.3 -6.0 2.8 3 8 A R - 0 0 157 -2,-2.1 2,-0.4 1,-0.1 0, 0.0 0.184 47.4 -66.5 36.0-158.3 -16.2 -7.6 4.4 4 9 A M - 0 0 108 51,-0.0 2,-0.2 49,-0.0 51,-0.2 -0.984 42.4-140.9-129.1 123.1 -12.8 -6.0 3.6 5 10 A D E -A 54 0A 65 49,-1.0 49,-2.3 -2,-0.4 2,-0.3 -0.580 24.4-176.1 -82.5 143.1 -11.2 -6.1 0.1 6 11 A Y E +A 53 0A 174 47,-0.3 47,-0.3 -2,-0.2 2,-0.3 -0.823 11.7 176.8-133.5 171.9 -7.4 -6.6 -0.1 7 12 A V E -A 52 0A 35 45,-2.1 45,-2.7 -2,-0.3 2,-0.5 -0.913 20.1-136.4-173.2 146.8 -4.7 -6.7 -2.7 8 13 A E E -A 51 0A 92 -2,-0.3 2,-0.6 43,-0.2 43,-0.2 -0.956 13.3-147.5-117.9 129.4 -0.9 -7.1 -2.9 9 14 A I E -A 50 0A 2 41,-1.5 41,-1.5 -2,-0.5 2,-1.1 -0.836 21.5-124.7 -98.0 123.3 1.4 -5.0 -5.2 10 15 A N E +A 49 0A 117 -2,-0.6 39,-0.3 39,-0.2 2,-0.2 -0.514 44.9 168.9 -68.6 98.3 4.5 -6.8 -6.5 11 16 A I E +A 48 0A 12 -2,-1.1 37,-2.5 37,-1.0 3,-0.1 -0.675 18.4 154.7-109.1 164.3 7.2 -4.4 -5.4 12 17 A D + 0 0 96 -2,-0.2 -1,-0.1 35,-0.2 3,-0.1 0.316 49.1 73.8-149.6 -65.6 11.0 -4.9 -5.4 13 18 A H S > S- 0 0 135 1,-0.2 2,-3.0 35,-0.1 3,-0.5 0.200 108.8 -65.3 -50.6-178.5 13.2 -1.8 -5.5 14 19 A K T 3> S+ 0 0 133 1,-0.2 4,-0.6 2,-0.1 -1,-0.2 -0.353 90.3 128.9 -73.5 64.1 13.6 0.4 -2.4 15 20 A F H 3> + 0 0 68 -2,-3.0 4,-3.5 2,-0.1 -1,-0.2 0.910 61.6 56.4 -84.0 -49.9 9.9 1.4 -2.5 16 21 A H H <> S+ 0 0 16 -3,-0.5 4,-3.1 2,-0.2 5,-0.5 0.952 109.8 42.5 -45.6 -71.7 9.0 0.6 1.1 17 22 A R H > S+ 0 0 186 1,-0.3 4,-1.6 2,-0.2 -1,-0.2 0.885 117.2 49.6 -44.4 -48.1 11.6 2.9 2.8 18 23 A H H < S+ 0 0 150 -4,-0.6 -1,-0.3 2,-0.2 -2,-0.2 0.927 116.9 40.8 -59.1 -47.6 10.8 5.6 0.2 19 24 A L H < S+ 0 0 6 -4,-3.5 7,-0.8 1,-0.2 6,-0.4 0.985 115.6 47.0 -65.5 -61.1 7.0 5.3 0.8 20 25 A I H X S- 0 0 42 -4,-3.1 4,-1.6 -5,-0.2 3,-0.4 0.772 95.4-170.5 -53.2 -25.4 7.1 4.9 4.6 21 26 A G T < - 0 0 34 -4,-1.6 -1,-0.2 -5,-0.5 -2,-0.1 -0.467 58.9 -3.3 70.7-136.6 9.5 7.9 4.5 22 27 A K T 4 S- 0 0 189 1,-0.2 -1,-0.2 -2,-0.2 -2,-0.1 0.976 147.0 -24.4 -50.9 -70.8 11.2 8.7 7.8 23 28 A S T 4 S- 0 0 105 -3,-0.4 -1,-0.2 1,-0.1 -2,-0.2 -0.119 119.7 -56.2-138.8 36.9 9.4 6.0 9.9 24 29 A G S < S+ 0 0 27 -4,-1.6 -3,-0.2 -7,-0.2 -4,-0.2 0.702 75.2 139.4 88.0 110.5 6.2 5.5 8.0 25 30 A A >> + 0 0 59 -6,-0.4 3,-2.2 -5,-0.2 4,-1.3 0.427 63.4 65.0-144.6 -48.3 3.9 8.4 7.2 26 31 A N H 3> S+ 0 0 41 -7,-0.8 4,-2.2 1,-0.3 5,-0.4 0.862 92.0 69.6 -52.6 -38.1 2.6 8.0 3.6 27 32 A I H 3> S+ 0 0 50 1,-0.3 4,-1.5 2,-0.2 11,-0.6 0.804 104.3 43.1 -50.9 -30.1 0.8 4.9 4.8 28 33 A N H <> S+ 0 0 85 -3,-2.2 4,-1.8 2,-0.2 5,-0.4 0.810 104.9 63.0 -85.3 -33.9 -1.4 7.2 6.8 29 34 A R H X S+ 0 0 188 -4,-1.3 4,-2.8 2,-0.2 -2,-0.2 0.923 116.0 30.7 -56.4 -47.1 -1.8 9.8 3.9 30 35 A I H X>S+ 0 0 19 -4,-2.2 4,-4.0 2,-0.2 6,-0.8 0.926 112.8 61.8 -77.9 -48.2 -3.6 7.2 1.8 31 36 A K H <5S+ 0 0 96 -4,-1.5 -2,-0.2 -5,-0.4 -1,-0.2 0.797 122.0 27.3 -47.8 -30.2 -5.2 5.2 4.6 32 37 A D H <5S+ 0 0 112 -4,-1.8 -2,-0.2 3,-0.2 -1,-0.2 0.829 122.6 50.0 -99.1 -46.5 -7.0 8.5 5.4 33 38 A Q H <5S+ 0 0 149 -4,-2.8 -3,-0.2 -5,-0.4 -2,-0.2 0.916 130.4 23.1 -59.4 -45.0 -7.0 10.1 1.9 34 39 A Y T <5S- 0 0 59 -4,-4.0 -1,-0.2 -5,-0.1 -3,-0.2 0.334 103.7-126.4-103.0 4.2 -8.4 7.0 0.4 35 40 A K S > S- 0 0 79 0, 0.0 3,-1.7 0, 0.0 4,-0.6 -0.002 108.1 -72.3 -75.3-172.4 -14.8 1.0 -1.4 57 62 A Q H 3> S+ 0 0 131 1,-0.3 4,-2.8 2,-0.2 3,-0.4 0.758 122.3 83.6 -53.0 -23.7 -13.2 1.8 -4.8 58 63 A G H 3> S+ 0 0 14 1,-0.2 4,-3.3 2,-0.2 5,-0.4 0.874 85.8 52.1 -47.9 -46.4 -10.6 3.6 -2.6 59 64 A V H <> S+ 0 0 9 -3,-1.7 4,-1.5 1,-0.2 -1,-0.2 0.909 115.1 40.8 -60.7 -42.6 -8.7 0.4 -1.9 60 65 A Q H X S+ 0 0 116 -4,-0.6 4,-2.0 -3,-0.4 -1,-0.2 0.787 117.1 51.2 -75.5 -27.5 -8.4 -0.4 -5.6 61 66 A Q H X S+ 0 0 95 -4,-2.8 4,-2.7 2,-0.2 -2,-0.2 0.969 113.5 40.7 -72.6 -55.8 -7.7 3.3 -6.4 62 67 A A H X S+ 0 0 1 -4,-3.3 4,-2.0 2,-0.2 -2,-0.2 0.860 114.0 58.0 -60.4 -35.1 -4.9 3.7 -3.8 63 68 A K H X S+ 0 0 62 -4,-1.5 4,-2.1 -5,-0.4 3,-0.4 0.978 112.9 35.5 -58.4 -60.2 -3.7 0.3 -4.8 64 69 A R H X S+ 0 0 170 -4,-2.0 4,-1.2 1,-0.2 5,-0.2 0.839 113.3 61.7 -63.4 -33.6 -3.2 1.1 -8.5 65 70 A E H X>S+ 0 0 76 -4,-2.7 4,-2.5 1,-0.2 5,-1.3 0.871 107.4 44.0 -60.6 -38.0 -2.2 4.6 -7.5 66 71 A L H <5S+ 0 0 8 -4,-2.0 -2,-0.2 -3,-0.4 -1,-0.2 0.931 109.3 54.1 -72.7 -48.0 0.8 3.2 -5.7 67 72 A L H <5S+ 0 0 87 -4,-2.1 -1,-0.2 -5,-0.2 -2,-0.2 0.722 124.0 30.2 -59.4 -20.7 1.7 0.7 -8.4 68 73 A E H <5S+ 0 0 138 -4,-1.2 -2,-0.2 -5,-0.2 -3,-0.2 0.850 139.0 16.3-101.2 -67.5 1.8 3.7 -10.7 69 74 A L T <5S- 0 0 109 -4,-2.5 -3,-0.2 -5,-0.2 -2,-0.1 0.917 74.1-170.5 -74.7 -45.9 2.8 6.8 -8.7 70 75 A A < 0 0 18 -5,-1.3 -4,-0.2 1,-0.2 -3,-0.1 0.847 360.0 360.0 55.2 35.3 4.2 4.9 -5.7 71 76 A S 0 0 102 -6,-0.3 -1,-0.2 -45,-0.0 -2,-0.1 -0.689 360.0 360.0 -80.2 360.0 4.4 8.2 -3.9