==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 15-OCT-04 1WRG . COMPND 2 MOLECULE: LIGHT-HARVESTING PROTEIN B-880, BETA CHAIN; . SOURCE 2 ORGANISM_SCIENTIFIC: RHODOSPIRILLUM RUBRUM; . AUTHOR Z.-Y.WANG,K.GOKAN,M.KOBAYASHI,T.NOZAWA . 55 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5714.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 69.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 30 54.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 147 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -75.2 5.7 -32.4 -9.0 2 2 A E + 0 0 183 2,-0.0 0, 0.0 0, 0.0 0, 0.0 0.744 360.0 89.8 -98.0 -31.4 3.5 -34.3 -6.6 3 3 A V + 0 0 92 2,-0.0 2,-0.1 3,-0.0 0, 0.0 -0.201 47.8 172.7 -64.6 158.5 1.2 -31.4 -5.6 4 4 A K - 0 0 165 0, 0.0 5,-0.1 0, 0.0 3,-0.1 -0.545 66.7 -52.3-173.5 100.2 -2.0 -30.7 -7.6 5 5 A Q S S+ 0 0 184 -2,-0.1 -2,-0.0 1,-0.1 5,-0.0 0.771 93.2 150.3 31.9 40.1 -4.7 -28.2 -6.7 6 6 A E > - 0 0 117 1,-0.0 3,-1.7 3,-0.0 4,-0.2 0.096 68.9 -71.0 -80.6-162.1 -4.8 -29.9 -3.3 7 7 A S T > S+ 0 0 97 1,-0.3 3,-1.8 2,-0.2 4,-0.3 0.806 128.4 70.5 -64.3 -29.1 -5.6 -28.4 0.1 8 8 A L T >> S+ 0 0 48 1,-0.3 4,-2.4 2,-0.2 3,-1.0 0.627 73.1 88.7 -63.5 -12.1 -2.3 -26.6 -0.1 9 9 A S H <> S+ 0 0 50 -3,-1.7 4,-1.5 1,-0.3 -1,-0.3 0.800 85.7 53.7 -57.1 -26.8 -3.9 -24.4 -2.8 10 10 A G H <4 S+ 0 0 49 -3,-1.8 4,-0.4 3,-0.2 -1,-0.3 0.787 109.6 47.0 -77.8 -28.0 -5.1 -22.2 0.0 11 11 A I H <> S+ 0 0 109 -3,-1.0 4,-2.7 -4,-0.3 5,-0.4 0.959 120.2 34.9 -76.9 -55.2 -1.6 -21.8 1.4 12 12 A T H X S+ 0 0 81 -4,-2.4 4,-2.2 1,-0.2 5,-0.2 0.957 127.0 39.5 -63.9 -52.4 0.2 -21.0 -1.8 13 13 A E H X S+ 0 0 137 -4,-1.5 4,-1.7 -5,-0.4 -1,-0.2 0.748 116.4 55.7 -69.5 -23.5 -2.7 -19.1 -3.3 14 14 A G H > S+ 0 0 23 -4,-0.4 4,-1.7 -5,-0.2 -2,-0.2 0.973 113.0 35.5 -73.2 -56.5 -3.4 -17.6 0.1 15 15 A E H X S+ 0 0 116 -4,-2.7 4,-2.5 2,-0.2 5,-0.2 0.914 119.8 51.6 -63.3 -43.3 0.0 -16.1 0.9 16 16 A A H X S+ 0 0 36 -4,-2.2 4,-2.0 -5,-0.4 -1,-0.2 0.923 108.9 50.2 -58.9 -46.1 0.5 -15.2 -2.8 17 17 A K H X S+ 0 0 119 -4,-1.7 4,-2.7 -5,-0.2 5,-0.3 0.838 110.0 53.2 -61.6 -33.6 -2.9 -13.5 -2.9 18 18 A E H X S+ 0 0 99 -4,-1.7 4,-3.2 2,-0.2 5,-0.4 0.973 108.8 45.3 -66.1 -56.7 -1.9 -11.6 0.2 19 19 A F H X S+ 0 0 124 -4,-2.5 4,-1.4 1,-0.2 -2,-0.2 0.833 116.9 48.9 -56.8 -33.8 1.4 -10.2 -1.1 20 20 A H H X S+ 0 0 132 -4,-2.0 4,-2.4 -5,-0.2 5,-0.3 0.975 115.3 39.9 -70.9 -57.4 -0.4 -9.3 -4.3 21 21 A K H X S+ 0 0 145 -4,-2.7 4,-3.0 1,-0.2 5,-0.2 0.930 117.8 49.0 -57.8 -48.7 -3.4 -7.5 -2.8 22 22 A I H X S+ 0 0 59 -4,-3.2 4,-2.7 -5,-0.3 -1,-0.2 0.865 111.2 52.6 -60.0 -36.9 -1.2 -5.8 -0.1 23 23 A F H X S+ 0 0 122 -4,-1.4 4,-2.0 -5,-0.4 -2,-0.2 0.993 114.9 36.9 -62.0 -64.8 1.2 -4.7 -2.9 24 24 A T H X S+ 0 0 71 -4,-2.4 4,-2.5 1,-0.2 5,-0.3 0.923 118.7 52.0 -54.0 -48.5 -1.4 -3.1 -5.2 25 25 A S H X S+ 0 0 59 -4,-3.0 4,-3.1 -5,-0.3 5,-0.4 0.939 108.4 49.7 -54.1 -53.1 -3.3 -1.8 -2.2 26 26 A S H X S+ 0 0 57 -4,-2.7 4,-2.3 -5,-0.2 -1,-0.2 0.853 111.7 51.3 -56.2 -37.0 -0.2 -0.2 -0.6 27 27 A I H X>S+ 0 0 103 -4,-2.0 4,-2.1 2,-0.2 5,-0.5 0.974 115.8 37.0 -65.5 -57.7 0.6 1.5 -3.9 28 28 A L H X5S+ 0 0 113 -4,-2.5 4,-1.7 1,-0.2 -2,-0.2 0.901 122.0 46.0 -62.5 -43.0 -2.8 3.1 -4.6 29 29 A V H X5S+ 0 0 79 -4,-3.1 4,-2.8 -5,-0.3 5,-0.3 0.890 114.1 49.6 -68.0 -40.2 -3.3 3.9 -0.9 30 30 A F H X5S+ 0 0 118 -4,-2.3 4,-2.7 -5,-0.4 3,-0.3 0.999 123.2 28.6 -60.6 -71.2 0.3 5.2 -0.5 31 31 A F H X5S+ 0 0 152 -4,-2.1 4,-2.3 1,-0.2 -1,-0.2 0.829 118.8 63.0 -59.0 -31.4 0.3 7.6 -3.5 32 32 A G H XS+ 0 0 91 -4,-2.8 4,-3.3 -3,-0.3 5,-0.6 0.986 117.9 50.6 -69.5 -60.5 -3.0 9.4 0.4 34 34 A A H X5S+ 0 0 7 -4,-2.7 4,-1.3 -5,-0.3 -2,-0.2 0.829 113.7 52.6 -46.3 -33.8 0.1 11.4 -0.4 35 35 A A H X5S+ 0 0 40 -4,-2.3 4,-2.3 -5,-0.3 3,-0.2 0.997 122.9 21.2 -66.1 -77.9 -1.8 12.6 -3.4 36 36 A F H X5S+ 0 0 150 -4,-2.0 4,-2.2 1,-0.2 5,-0.3 0.919 123.7 59.0 -58.1 -45.5 -5.1 13.9 -1.9 37 37 A A H X5S+ 0 0 25 -4,-3.3 4,-1.5 -5,-0.4 -1,-0.2 0.884 110.1 42.0 -50.7 -45.6 -3.4 14.3 1.5 38 38 A H H X