==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 16-NOV-04 1WT7 . COMPND 2 MOLECULE: BUTX-MTX; . SOURCE 2 SYNTHETIC: YES; . AUTHOR S.M'BAREK,B.CHAGOT,N.ANDREOTTI,V.VISAN,P.MANSUELLE, . 41 1 5 5 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3164.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 53.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 12.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 12.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 22.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A W 0 0 237 0, 0.0 2,-0.5 0, 0.0 22,-0.3 0.000 360.0 360.0 360.0 144.7 5.9 1.3 10.2 2 2 A a - 0 0 21 17,-0.2 3,-0.3 1,-0.1 21,-0.0 -0.764 360.0-167.8 -90.3 128.3 4.4 4.7 9.3 3 3 A S S S+ 0 0 109 -2,-0.5 2,-1.4 1,-0.2 -1,-0.1 0.794 82.6 67.9 -84.1 -29.8 3.5 6.8 12.2 4 4 A T S S+ 0 0 123 1,-0.1 2,-0.4 2,-0.0 -1,-0.2 -0.304 78.6 107.0 -85.8 52.1 1.5 9.3 10.1 5 5 A a + 0 0 47 -2,-1.4 -1,-0.1 -3,-0.3 -3,-0.0 -0.860 21.8 126.2-137.3 99.0 -1.2 6.7 9.3 6 6 A L S S- 0 0 176 -2,-0.4 2,-0.3 0, 0.0 -1,-0.1 0.683 86.8 -20.6-109.5 -71.3 -4.6 6.9 11.0 7 7 A D + 0 0 92 28,-0.0 2,-0.1 2,-0.0 28,-0.1 -0.809 55.7 170.7-147.3 97.9 -7.2 6.8 8.2 8 8 A L > + 0 0 30 -2,-0.3 3,-1.9 26,-0.0 2,-1.6 -0.254 14.1 177.2-101.7 44.0 -6.2 7.7 4.7 9 9 A A T 3 S- 0 0 32 1,-0.3 26,-0.1 25,-0.2 24,-0.1 -0.253 80.1 -34.5 -55.7 83.7 -9.5 6.6 3.2 10 10 A b T 3 S+ 0 0 78 -2,-1.6 -1,-0.3 2,-0.1 3,-0.1 0.926 90.3 145.9 60.5 47.8 -8.6 7.7 -0.4 11 11 A T S < S- 0 0 89 -3,-1.9 -2,-0.1 1,-0.3 2,-0.1 0.622 83.5 -52.4 -79.0 -14.0 -6.6 10.7 0.7 12 12 A G > - 0 0 26 -4,-0.5 4,-2.6 2,-0.1 -1,-0.3 -0.212 38.3-132.7 141.6 123.8 -4.6 9.8 -2.3 13 13 A S H > S+ 0 0 37 1,-0.2 4,-1.3 2,-0.2 16,-0.1 0.937 115.9 49.1 -60.2 -44.3 -3.0 6.6 -3.6 14 14 A K H > S+ 0 0 176 1,-0.2 4,-0.6 2,-0.2 -1,-0.2 0.790 110.7 52.4 -64.4 -26.6 0.2 8.6 -4.3 15 15 A D H >4 S+ 0 0 86 1,-0.2 3,-0.6 2,-0.2 -2,-0.2 0.905 110.3 46.3 -72.1 -41.6 -0.2 10.0 -0.8 16 16 A c H 3X S+ 0 0 3 -4,-2.6 4,-3.1 1,-0.2 5,-0.3 0.609 92.6 82.9 -77.3 -15.0 -0.5 6.5 0.7 17 17 A Y H 3X S+ 0 0 88 -4,-1.3 4,-2.2 2,-0.2 -1,-0.2 0.918 94.2 44.9 -52.4 -46.8 2.6 5.4 -1.4 18 18 A A H S+ 0 0 20 0, 0.0 4,-1.4 0, 0.0 -17,-0.2 0.909 114.2 49.8 -50.2 -46.4 3.0 5.4 4.3 20 20 A d H X>S+ 0 0 5 -4,-3.1 4,-3.3 2,-0.2 5,-1.0 0.909 111.2 49.1 -62.9 -41.4 2.8 2.0 2.5 21 21 A R H X5S+ 0 0 136 -4,-2.2 4,-0.9 -5,-0.3 -1,-0.2 0.931 113.8 45.9 -59.3 -45.9 6.5 2.2 1.8 22 22 A K H <5S+ 0 0 128 -4,-2.9 -1,-0.2 1,-0.2 -2,-0.2 0.665 118.8 44.3 -73.5 -17.5 7.2 3.0 5.4 23 23 A Q H <5S+ 0 0 97 -4,-1.4 -2,-0.2 -22,-0.3 -3,-0.2 0.912 134.3 7.4 -90.0 -55.6 4.8 0.2 6.5 24 24 A T H <5S- 0 0 51 -4,-3.3 -3,-0.2 2,-0.3 -2,-0.1 0.744 96.2-110.8-102.3 -28.7 5.7 -2.7 4.3 25 25 A G S < +A 35 0A 71 3,-3.1 3,-1.5 -2,-0.8 5,-0.1 -0.966 57.4 29.8-144.3 155.7 -10.1 0.4 -1.4 33 33 A N T 3 S- 0 0 153 -2,-0.3 3,-0.1 1,-0.3 -1,-0.1 0.735 133.7 -66.0 63.8 21.9 -12.3 -0.8 1.4 34 34 A K T 3 S+ 0 0 134 1,-0.2 2,-0.3 -26,-0.1 -1,-0.3 0.776 123.2 87.0 66.4 28.9 -11.9 2.7 2.7 35 35 A S E < S-A 32 0A 46 -3,-1.5 -3,-3.1 -26,-0.1 2,-1.4 -0.992 87.5-108.4-151.4 150.5 -8.2 2.0 3.3 36 36 A c E -A 31 0A 29 -2,-0.3 2,-0.3 -5,-0.3 -5,-0.3 -0.676 43.5-161.7 -81.9 94.3 -5.0 2.2 1.4 37 37 A K E -A 30 0A 111 -7,-2.2 -7,-2.2 -2,-1.4 2,-0.3 -0.606 7.6-138.8 -83.2 134.2 -4.3 -1.4 0.9 38 38 A d E -A 29 0A 34 -2,-0.3 -9,-0.2 -9,-0.2 3,-0.1 -0.658 14.4-128.4 -90.3 148.1 -0.8 -2.5 -0.1 39 39 A Y - 0 0 120 -11,-1.8 -10,-0.1 -2,-0.3 -1,-0.1 0.170 64.1 -90.3 -82.7 20.5 -0.3 -5.2 -2.7 40 40 A G 0 0 52 -12,-0.2 -1,-0.3 1,-0.1 -12,-0.1 0.151 360.0 360.0 87.1 152.4 2.0 -7.1 -0.3 41 41 A e 0 0 119 -3,-0.1 -1,-0.1 -17,-0.0 -15,-0.1 -0.460 360.0 360.0-160.9 360.0 5.8 -6.8 0.3