==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 17-NOV-04 1WT8 . COMPND 2 MOLECULE: NEUROTOXIN BMK X; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS MARTENSII; . AUTHOR H.WU,X.CHEN,X.TONG,Y.LI,N.ZHANG,G.WU . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2496.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 54.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 19.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 19.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 140 0, 0.0 2,-2.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -55.2 8.8 -4.0 -10.7 2 2 A P + 0 0 120 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.066 360.0 155.4 -73.2 40.8 10.4 -1.9 -7.9 3 3 A Y - 0 0 143 -2,-2.2 2,-2.2 1,-0.1 0, 0.0 -0.562 43.3-138.7 -67.8 118.3 7.4 0.4 -7.3 4 4 A P + 0 0 100 0, 0.0 2,-0.7 0, 0.0 -1,-0.1 -0.225 34.9 171.2 -79.4 50.8 7.9 1.6 -3.6 5 5 A V + 0 0 42 -2,-2.2 22,-1.4 21,-0.1 2,-0.2 -0.547 18.0 166.9 -70.5 111.6 4.2 1.2 -2.8 6 6 A N E +A 26 0A 85 -2,-0.7 20,-0.3 20,-0.3 2,-0.2 -0.597 21.6 168.4-130.1 175.1 4.2 1.7 0.8 7 7 A a E -A 25 0A 8 18,-2.0 18,-0.7 -2,-0.2 3,-0.1 -0.847 40.3-133.9 174.5 144.1 2.0 2.4 3.8 8 8 A K S S- 0 0 158 1,-0.3 2,-0.2 -2,-0.2 18,-0.1 0.830 93.8 -37.1 -70.9 -39.8 1.9 2.6 7.6 9 9 A T S > S- 0 0 80 16,-0.1 3,-0.7 15,-0.1 4,-0.3 -0.906 83.8 -59.5-166.5-170.7 -1.4 0.5 7.3 10 10 A D G >> S+ 0 0 53 1,-0.3 3,-2.4 -2,-0.2 4,-1.1 0.915 129.1 55.6 -55.9 -47.5 -4.5 0.0 5.2 11 11 A R G >4 S+ 0 0 170 1,-0.3 3,-0.8 2,-0.2 4,-0.4 0.883 97.1 65.0 -47.9 -41.0 -5.6 3.6 5.8 12 12 A D G <4 S+ 0 0 24 -3,-0.7 -1,-0.3 1,-0.3 -2,-0.2 0.568 115.2 28.7 -73.7 -0.9 -2.3 4.7 4.4 13 13 A b G X4 S+ 0 0 2 -3,-2.4 3,-2.5 6,-0.4 4,-0.3 0.275 79.0 112.8-141.0 9.4 -3.3 3.3 1.0 14 14 A V G X< S+ 0 0 65 -4,-1.1 3,-2.6 -3,-0.8 -2,-0.1 0.878 73.4 68.4 -31.7 -47.2 -7.0 3.5 1.0 15 15 A M G 3 S+ 0 0 160 -4,-0.4 -1,-0.3 1,-0.3 5,-0.1 0.706 84.8 70.0 -55.3 -26.6 -6.4 6.1 -1.8 16 16 A c G < S- 0 0 38 -3,-2.5 -1,-0.3 3,-0.2 -2,-0.2 0.654 129.3 -64.5 -70.2 -17.9 -5.2 3.2 -4.1 17 17 A G S < S- 0 0 61 -3,-2.6 -3,-0.1 1,-0.4 13,-0.0 -0.453 100.1 -14.1 175.3 -91.7 -8.8 1.9 -4.3 18 18 A L S S- 0 0 147 -2,-0.1 -1,-0.4 -5,-0.1 -2,-0.1 0.639 119.4 -40.3 -99.5-100.5 -10.8 0.6 -1.4 19 19 A G - 0 0 13 -3,-0.1 -6,-0.4 -4,-0.1 -3,-0.2 0.792 64.4-157.2 -92.9 -42.9 -8.8 -0.2 1.8 20 20 A I - 0 0 39 -6,-0.1 10,-0.2 -4,-0.1 9,-0.1 0.993 26.7-130.9 52.9 65.8 -5.8 -1.7 -0.1 21 21 A S - 0 0 91 1,-0.1 2,-0.4 8,-0.1 9,-0.1 -0.103 27.5-138.1 -60.2 145.8 -4.8 -3.6 3.1 22 22 A a - 0 0 32 5,-0.1 -12,-0.2 7,-0.1 5,-0.2 -0.862 12.5-134.1-135.0 132.6 -1.2 -3.2 3.9 23 23 A K - 0 0 108 3,-2.5 2,-2.7 -2,-0.4 -16,-0.1 -0.357 61.1 -74.7 -74.7 166.5 1.9 -5.0 5.1 24 24 A N S S- 0 0 159 1,-0.3 -1,-0.1 -2,-0.1 -16,-0.1 -0.344 123.8 -10.3 -66.1 69.4 4.1 -3.5 7.8 25 25 A G E S+A 7 0A 31 -2,-2.7 -18,-2.0 -18,-0.7 2,-0.5 -0.092 121.9 88.8 134.6 -34.1 5.6 -0.9 5.4 26 26 A Y E -A 6 0A 95 -20,-0.3 -3,-2.5 -18,-0.1 2,-1.7 -0.894 54.8-157.0-125.5 118.8 4.3 -2.2 2.1 27 27 A b > + 0 0 0 -22,-1.4 2,-2.6 -2,-0.5 3,-0.7 -0.402 27.0 171.5 -88.0 59.0 1.2 -1.5 0.0 28 28 A Q T 3 + 0 0 107 -2,-1.7 -1,-0.1 1,-0.2 -7,-0.1 -0.403 66.9 47.8 -70.9 67.0 1.5 -4.8 -1.9 29 29 A G T 3 + 0 0 34 -2,-2.6 -1,-0.2 -9,-0.1 -8,-0.1 0.204 68.0 103.8-164.7 -52.7 -1.9 -4.5 -3.6 30 30 A c < 0 0 43 -3,-0.7 -2,-0.1 1,-0.4 -10,-0.0 0.592 360.0 360.0 -20.2 -57.2 -2.5 -0.9 -5.0 31 31 A T 0 0 148 0, 0.0 -1,-0.4 0, 0.0 -3,-0.1 0.392 360.0 360.0 -31.3 360.0 -1.9 -2.3 -8.5