==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL PROTEIN 04-FEB-05 1WY3 . COMPND 2 MOLECULE: VILLIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR T.K.CHIU,J.KUBELKA,R.HERBST-IRMER,W.A.EATON,J.HOFRICHTER, . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2750.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 68.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 19 54.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 42 A L 0 0 101 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 140.6 14.3 -1.4 57.4 2 43 A S > - 0 0 59 1,-0.1 4,-2.8 4,-0.0 5,-0.2 -0.335 360.0-105.1 -66.0 162.7 13.7 -5.1 56.5 3 44 A D H > S+ 0 0 109 1,-0.2 4,-2.4 2,-0.2 5,-0.2 0.903 124.1 49.0 -56.0 -41.5 11.4 -7.0 58.9 4 45 A E H > S+ 0 0 124 2,-0.2 4,-2.1 1,-0.2 -1,-0.2 0.904 111.5 48.2 -67.2 -40.1 14.5 -8.8 60.3 5 46 A D H > S+ 0 0 91 2,-0.2 4,-2.3 1,-0.2 -2,-0.2 0.896 110.7 52.3 -64.0 -39.5 16.4 -5.5 60.8 6 47 A F H X S+ 0 0 5 -4,-2.8 4,-2.8 2,-0.2 5,-0.4 0.936 110.1 48.0 -59.1 -50.2 13.3 -3.9 62.5 7 48 A K H X S+ 0 0 88 -4,-2.4 4,-1.9 1,-0.2 -1,-0.2 0.868 111.3 51.9 -60.0 -39.0 13.2 -6.9 64.9 8 49 A A H < S+ 0 0 82 -4,-2.1 -2,-0.2 2,-0.2 -1,-0.2 0.911 115.0 40.3 -62.1 -43.0 16.9 -6.5 65.5 9 50 A V H < S+ 0 0 49 -4,-2.3 -2,-0.2 1,-0.2 -3,-0.2 0.954 130.1 24.9 -71.6 -49.9 16.7 -2.8 66.3 10 51 A F H < S- 0 0 13 -4,-2.8 -3,-0.2 2,-0.3 -2,-0.2 0.541 94.7-126.0-101.7 -10.9 13.4 -2.8 68.4 11 52 A G S < S+ 0 0 69 -4,-1.9 2,-0.3 -5,-0.4 -4,-0.2 0.747 83.0 66.2 75.7 19.8 13.3 -6.3 69.7 12 53 A M S S- 0 0 51 -6,-0.4 -2,-0.3 -5,-0.1 -1,-0.2 -0.968 88.3 -87.9-164.7 159.6 9.8 -6.9 68.4 13 54 A T > - 0 0 57 -2,-0.3 4,-2.5 1,-0.1 5,-0.2 -0.329 40.0-108.9 -73.1 163.9 7.9 -7.1 65.1 14 55 A R H > S+ 0 0 109 1,-0.2 4,-2.0 2,-0.2 5,-0.1 0.875 121.4 52.0 -56.4 -38.9 6.5 -4.1 63.2 15 56 A S H > S+ 0 0 91 2,-0.2 4,-0.8 1,-0.2 -1,-0.2 0.892 108.8 49.3 -72.4 -36.3 3.0 -5.3 64.1 16 57 A A H >> S+ 0 0 43 1,-0.2 3,-0.9 2,-0.2 4,-0.6 0.933 109.9 52.1 -62.3 -43.1 3.9 -5.5 67.8 17 58 A F H >< S+ 0 0 13 -4,-2.5 3,-1.4 1,-0.2 -2,-0.2 0.901 104.3 56.6 -57.2 -41.0 5.4 -2.1 67.7 18 59 A A H 3< S+ 0 0 68 -4,-2.0 -1,-0.2 1,-0.3 -2,-0.2 0.709 100.4 59.7 -68.9 -18.9 2.1 -0.8 66.1 19 60 A N H << S+ 0 0 140 -3,-0.9 -1,-0.3 -4,-0.8 -2,-0.2 0.636 87.0 95.6 -80.2 -16.0 0.2 -2.1 69.2 20 61 A L S << S- 0 0 46 -3,-1.4 5,-0.0 -4,-0.6 -3,-0.0 -0.410 92.0 -94.8 -69.6 151.4 2.3 0.1 71.5 21 62 A P >> - 0 0 64 0, 0.0 4,-2.2 0, 0.0 3,-0.9 -0.361 36.7-113.2 -60.7 148.6 0.8 3.4 72.5 22 63 A L H 3> S+ 0 0 112 1,-0.3 4,-2.7 2,-0.2 5,-0.3 0.864 115.9 61.2 -50.9 -41.0 2.1 6.3 70.3 23 64 A W H 3> S+ 0 0 180 1,-0.2 4,-2.0 2,-0.2 -1,-0.3 0.884 109.2 42.1 -60.0 -36.3 4.1 7.8 73.2 24 65 A X H <> S+ 0 0 47 -3,-0.9 4,-2.6 2,-0.2 -1,-0.2 0.882 110.2 56.0 -79.6 -37.0 6.1 4.6 73.5 25 66 A Q H X S+ 0 0 35 -4,-2.2 4,-2.3 1,-0.2 -2,-0.2 0.944 113.3 42.2 -54.0 -48.3 6.5 4.2 69.7 26 67 A Q H X S+ 0 0 76 -4,-2.7 4,-2.4 2,-0.2 5,-0.2 0.897 110.5 56.3 -70.0 -38.7 8.0 7.7 69.7 27 68 A H H X S+ 0 0 96 -4,-2.0 4,-2.4 -5,-0.3 -1,-0.2 0.924 111.0 45.3 -52.5 -48.7 10.1 7.1 72.8 28 69 A L H X S+ 0 0 17 -4,-2.6 4,-2.3 2,-0.2 -2,-0.2 0.895 109.6 53.1 -70.5 -40.2 11.7 4.0 71.1 29 70 A K H X>S+ 0 0 41 -4,-2.3 5,-2.2 -5,-0.2 4,-0.7 0.948 113.5 43.4 -59.2 -46.3 12.4 5.8 67.8 30 71 A K H ><5S+ 0 0 154 -4,-2.4 3,-1.1 1,-0.2 -2,-0.2 0.935 112.2 54.5 -62.1 -43.7 14.2 8.6 69.6 31 72 A E H 3<5S+ 0 0 119 -4,-2.4 -1,-0.2 1,-0.3 -2,-0.2 0.863 113.2 40.8 -57.3 -42.7 16.0 6.1 71.8 32 73 A K H 3<5S- 0 0 94 -4,-2.3 -1,-0.3 -5,-0.1 -2,-0.2 0.468 111.6-117.3 -90.0 -3.3 17.4 4.1 68.8 33 74 A G T <<5S+ 0 0 63 -3,-1.1 2,-0.3 -4,-0.7 -3,-0.2 0.819 70.7 125.4 75.3 29.6 18.2 7.2 66.7 34 75 A L < 0 0 60 -5,-2.2 -1,-0.3 -6,-0.2 -2,-0.1 -0.750 360.0 360.0-123.0 168.1 15.8 6.4 63.9 35 76 A F 0 0 184 -2,-0.3 0, 0.0 -3,-0.1 0, 0.0 -0.142 360.0 360.0 55.3 360.0 12.9 8.1 62.1