==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL PROTEIN 04-FEB-05 1WY4 . COMPND 2 MOLECULE: VILLIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR T.K.CHIU,J.KUBELKA,R.HERBST-IRMER,W.A.EATON,J.HOFRICHTER, . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2716.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 68.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 19 54.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 42 A L 0 0 89 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 163.8 14.0 -1.0 57.3 2 43 A S > - 0 0 53 1,-0.1 4,-2.9 4,-0.0 5,-0.2 -0.126 360.0-108.8 -71.1 161.4 13.5 -4.7 56.8 3 44 A D H > S+ 0 0 93 1,-0.2 4,-2.0 2,-0.2 5,-0.2 0.876 121.4 50.6 -62.2 -32.1 11.4 -6.8 59.0 4 45 A E H > S+ 0 0 152 2,-0.2 4,-1.5 1,-0.2 -1,-0.2 0.908 111.2 46.9 -74.2 -39.0 14.5 -8.4 60.4 5 46 A D H > S+ 0 0 88 1,-0.2 4,-2.9 2,-0.2 5,-0.2 0.878 110.8 53.7 -68.2 -37.0 16.2 -5.1 61.1 6 47 A F H X S+ 0 0 10 -4,-2.9 4,-3.0 1,-0.2 5,-0.4 0.949 108.1 48.7 -57.5 -52.9 13.1 -3.8 62.8 7 48 A K H X S+ 0 0 86 -4,-2.0 4,-2.0 1,-0.2 -1,-0.2 0.829 112.2 50.4 -59.8 -34.8 12.9 -6.8 65.1 8 49 A A H < S+ 0 0 83 -4,-1.5 -1,-0.2 2,-0.2 -2,-0.2 0.967 114.2 42.7 -69.5 -45.1 16.6 -6.3 65.9 9 50 A V H < S+ 0 0 49 -4,-2.9 -2,-0.2 1,-0.2 -3,-0.2 0.962 130.7 23.3 -62.0 -51.6 16.2 -2.6 66.7 10 51 A F H < S- 0 0 16 -4,-3.0 -3,-0.2 2,-0.3 -1,-0.2 0.545 92.4-131.2 -98.0 -9.9 13.0 -2.8 68.7 11 52 A G S < S+ 0 0 69 -4,-2.0 2,-0.3 -5,-0.4 -4,-0.2 0.770 79.4 72.3 65.4 25.8 13.0 -6.5 69.9 12 53 A M S S- 0 0 51 -6,-0.3 -2,-0.3 -5,-0.1 -1,-0.2 -0.978 87.3 -88.3-157.8 164.3 9.4 -7.0 68.7 13 54 A T > - 0 0 57 -2,-0.3 4,-2.8 1,-0.1 5,-0.2 -0.276 38.5-111.2 -74.6 163.9 7.4 -7.3 65.5 14 55 A R H > S+ 0 0 98 1,-0.2 4,-2.4 2,-0.2 5,-0.1 0.893 122.1 52.1 -63.9 -35.1 5.9 -4.4 63.6 15 56 A S H > S+ 0 0 90 2,-0.2 4,-0.8 1,-0.2 -1,-0.2 0.885 108.3 51.0 -67.8 -36.0 2.5 -5.5 64.7 16 57 A A H >> S+ 0 0 38 1,-0.2 3,-1.2 2,-0.2 4,-0.6 0.953 109.8 49.6 -62.5 -50.9 3.6 -5.6 68.3 17 58 A F H >< S+ 0 0 14 -4,-2.8 3,-1.5 1,-0.3 -2,-0.2 0.903 106.6 56.0 -54.5 -44.9 5.0 -2.1 68.0 18 59 A A H 3< S+ 0 0 66 -4,-2.4 -1,-0.3 1,-0.3 -2,-0.2 0.673 99.8 60.0 -63.1 -16.1 1.7 -0.9 66.5 19 60 A N H << S+ 0 0 142 -3,-1.2 -1,-0.3 -4,-0.8 -2,-0.2 0.622 88.8 94.5 -84.4 -14.7 -0.2 -2.2 69.5 20 61 A L S << S- 0 0 48 -3,-1.5 5,-0.1 -4,-0.6 -3,-0.0 -0.411 91.4 -96.7 -71.2 156.3 1.8 0.1 71.7 21 62 A P >> - 0 0 61 0, 0.0 4,-2.4 0, 0.0 3,-0.7 -0.352 35.4-112.7 -64.3 150.1 0.4 3.5 72.6 22 63 A L H 3> S+ 0 0 115 1,-0.2 4,-3.1 2,-0.2 5,-0.3 0.865 115.3 59.3 -47.5 -45.4 1.7 6.3 70.4 23 64 A W H 3> S+ 0 0 186 1,-0.2 4,-2.1 2,-0.2 -1,-0.2 0.907 110.2 43.2 -58.3 -34.5 3.7 7.9 73.3 24 65 A X H <> S+ 0 0 49 -3,-0.7 4,-2.5 2,-0.2 -2,-0.2 0.918 111.1 52.8 -83.9 -34.9 5.6 4.7 73.7 25 66 A Q H X S+ 0 0 35 -4,-2.4 4,-2.1 1,-0.2 -2,-0.2 0.928 113.4 45.9 -56.3 -46.9 6.1 4.2 70.0 26 67 A Q H X S+ 0 0 74 -4,-3.1 4,-2.3 1,-0.2 -2,-0.2 0.905 109.7 54.3 -66.0 -39.1 7.5 7.7 69.8 27 68 A H H X S+ 0 0 98 -4,-2.1 4,-2.4 -5,-0.3 -1,-0.2 0.913 109.9 47.2 -56.8 -47.3 9.6 7.1 72.9 28 69 A L H X S+ 0 0 19 -4,-2.5 4,-2.2 2,-0.2 6,-0.2 0.887 108.6 53.5 -65.3 -37.7 11.2 4.1 71.3 29 70 A K H X>S+ 0 0 54 -4,-2.1 5,-2.5 1,-0.2 4,-0.8 0.921 113.2 43.9 -64.9 -45.6 11.9 5.8 68.0 30 71 A K H ><5S+ 0 0 149 -4,-2.3 3,-1.0 2,-0.2 -2,-0.2 0.933 111.7 53.0 -63.5 -43.3 13.7 8.6 69.8 31 72 A E H 3<5S+ 0 0 114 -4,-2.4 -1,-0.2 1,-0.3 -2,-0.2 0.834 114.2 43.2 -59.7 -39.7 15.6 6.2 72.1 32 73 A K H 3<5S- 0 0 92 -4,-2.2 -1,-0.3 -5,-0.2 -2,-0.2 0.511 110.8-118.6 -89.3 -3.2 16.9 4.2 69.2 33 74 A G T <<5S+ 0 0 67 -3,-1.0 2,-0.3 -4,-0.8 -3,-0.2 0.736 70.2 130.6 76.1 26.6 17.7 7.2 67.0 34 75 A L < 0 0 52 -5,-2.5 -1,-0.3 -6,-0.2 -2,-0.1 -0.727 360.0 360.0-115.2 160.8 15.3 6.2 64.3 35 76 A F 0 0 159 -2,-0.3 0, 0.0 -3,-0.1 0, 0.0 -0.177 360.0 360.0 53.6 360.0 12.5 7.9 62.3