==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 24-FEB-05 1WZ5 . COMPND 2 MOLECULE: POTASSIUM CHANNEL BLOCKING TOXIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: PANDINUS IMPERATOR; . AUTHOR G.FERRAT . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3344.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 45.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 172 0, 0.0 3,-0.1 0, 0.0 2,-0.0 0.000 360.0 360.0 360.0 72.6 -6.7 -5.6 7.1 2 2 A V + 0 0 120 1,-0.1 3,-0.1 27,-0.1 27,-0.0 -0.456 360.0 76.8-143.3 65.9 -4.3 -8.4 6.5 3 3 A K S S- 0 0 163 1,-0.2 2,-0.5 23,-0.0 -1,-0.1 -0.177 92.5-108.4-170.2 60.6 -4.5 -9.5 2.9 4 4 A a + 0 0 49 23,-0.3 -1,-0.2 22,-0.2 6,-0.2 -0.202 55.2 155.8 46.2 -94.4 -2.8 -7.1 0.5 5 5 A R > + 0 0 181 -2,-0.5 2,-3.3 1,-0.2 4,-0.5 0.611 16.6 155.3 52.8 9.7 -6.0 -5.6 -1.1 6 6 A G T 4 + 0 0 23 1,-0.2 -1,-0.2 2,-0.1 25,-0.1 -0.330 16.8 128.9 -68.2 67.4 -3.7 -2.7 -1.8 7 7 A T T 4 S- 0 0 129 -2,-3.3 -1,-0.2 -3,-0.1 -2,-0.1 0.508 97.6 -42.3 -98.2 -9.3 -5.8 -1.5 -4.8 8 8 A S T > S+ 0 0 80 -3,-0.4 4,-0.8 0, 0.0 -2,-0.1 0.181 123.2 84.6 169.5 -23.4 -6.1 2.1 -3.5 9 9 A D T >< S+ 0 0 98 -4,-0.5 3,-2.1 1,-0.2 -3,-0.1 0.986 94.3 45.0 -63.7 -60.4 -6.7 1.9 0.3 10 10 A b T 3> S+ 0 0 25 1,-0.3 4,-2.0 2,-0.2 5,-0.2 0.806 105.7 67.0 -53.5 -29.3 -3.1 1.6 1.4 11 11 A G H 3> S+ 0 0 16 1,-0.2 4,-1.7 2,-0.2 -1,-0.3 0.796 95.8 54.8 -62.8 -30.6 -2.4 4.4 -1.1 12 12 A R H S+ 0 0 95 0, 0.0 4,-0.5 0, 0.0 3,-0.4 0.913 121.4 44.3 -56.0 -44.9 -2.6 6.5 4.4 14 14 A c H >X S+ 0 0 20 -4,-2.0 4,-1.8 1,-0.2 3,-0.8 0.818 101.7 66.5 -70.4 -33.7 0.8 6.3 2.7 15 15 A Q H 3< S+ 0 0 99 -4,-1.7 -1,-0.2 1,-0.3 -3,-0.1 0.850 87.8 69.4 -58.9 -32.0 0.0 9.2 0.3 16 16 A Q H 3< S+ 0 0 160 -4,-1.2 -1,-0.3 -3,-0.4 -2,-0.2 0.930 111.3 32.7 -49.3 -46.6 -0.0 11.5 3.3 17 17 A Q H << S+ 0 0 164 -3,-0.8 -2,-0.2 -4,-0.5 -1,-0.1 0.993 132.1 22.5 -71.3 -74.1 3.7 10.9 3.5 18 18 A T S < S- 0 0 40 -4,-1.8 4,-0.1 1,-0.2 2,-0.1 0.371 88.8-110.3 -72.2-148.8 4.7 10.5 -0.1 19 19 A G - 0 0 32 2,-0.1 3,-0.3 0, 0.0 -1,-0.2 -0.072 56.1 -46.7-122.6-137.3 2.7 11.8 -3.1 20 20 A X S S+ 0 0 124 1,-0.2 2,-2.5 -2,-0.1 -5,-0.1 0.922 123.0 65.2 -70.2 -46.9 0.6 10.4 -6.0 21 21 A P S S+ 0 0 105 0, 0.0 2,-0.4 0, 0.0 14,-0.3 -0.330 73.5 122.1 -76.1 59.5 3.1 7.6 -7.0 22 22 A N + 0 0 3 -2,-2.5 2,-0.3 -3,-0.3 -7,-0.2 -0.808 33.7 102.6-127.5 91.7 2.7 5.8 -3.7 23 23 A S + 0 0 79 -2,-0.4 11,-0.4 -9,-0.1 9,-0.3 -0.874 22.9 145.3-171.2 136.4 1.5 2.2 -4.0 24 24 A K E -A 31 0A 87 7,-2.4 7,-3.3 -2,-0.3 2,-0.4 -0.915 18.6-162.5-170.1 142.1 2.8 -1.4 -3.8 25 25 A a E +A 30 0A 44 -2,-0.3 2,-0.3 5,-0.3 5,-0.2 -0.996 7.2 178.0-139.7 138.1 1.5 -4.7 -2.6 26 26 A I E > -A 29 0A 72 3,-2.5 3,-0.6 -2,-0.4 -22,-0.2 -0.970 44.3-108.2-135.1 148.1 3.1 -8.0 -1.6 27 27 A N T 3 S+ 0 0 146 -2,-0.3 -23,-0.3 1,-0.3 3,-0.1 0.863 120.7 54.2 -39.3 -47.3 1.6 -11.3 -0.3 28 28 A R T 3 S- 0 0 207 1,-0.2 2,-0.3 -25,-0.1 -1,-0.3 0.925 126.8 -47.6 -56.0 -51.0 3.1 -10.5 3.0 29 29 A M E < -A 26 0A 108 -3,-0.6 -3,-2.5 -26,-0.1 -1,-0.2 -0.977 65.7 -65.4-170.7 179.8 1.6 -7.1 3.3 30 30 A b E +A 25 0A 35 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.3 -0.379 45.8 178.4 -79.5 159.7 0.8 -3.7 1.7 31 31 A K E -A 24 0A 77 -7,-3.3 -7,-2.4 -2,-0.1 2,-0.3 -0.965 12.4-153.1-155.6 165.8 3.5 -1.2 0.7 32 32 A c + 0 0 33 -9,-0.3 -10,-0.1 -2,-0.3 -8,-0.0 -0.967 65.6 19.7-144.7 159.6 3.9 2.2 -0.9 33 33 A Y S S+ 0 0 154 -2,-0.3 -1,-0.2 1,-0.1 -11,-0.1 0.944 70.8 136.0 43.8 70.8 6.5 4.2 -2.9 34 34 A G 0 0 43 -11,-0.4 -1,-0.1 -3,-0.1 -12,-0.1 0.002 360.0 360.0-133.4 29.1 8.5 1.2 -4.1 35 35 A X 0 0 185 -14,-0.3 -12,-0.0 -11,-0.0 -11,-0.0 -1.000 360.0 360.0-135.3 360.0 9.1 2.1 -7.8