==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RNA BINDING PROTEIN 14-MAY-05 1X4P . COMPND 2 MOLECULE: PUTATIVE SPLICING FACTOR, ARGININE/SERINE-RICH . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR F.HE,Y.MUTO,M.INOUE,T.KIGAWA,M.SHIROUZU,T.TERADA,S.YOKOYAMA, . 66 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5196.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 45 68.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 4.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 11 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 29 43.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 137 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-168.0 -3.7 -13.5 15.0 2 2 A S - 0 0 128 1,-0.3 2,-0.3 0, 0.0 0, 0.0 0.401 360.0 -48.7-147.5 -50.9 -4.0 -17.2 14.3 3 3 A S S S+ 0 0 123 2,-0.1 2,-0.3 0, 0.0 -1,-0.3 -0.975 72.7 94.2-178.7 178.4 -7.0 -18.0 12.1 4 4 A G S S- 0 0 78 -2,-0.3 2,-0.2 -3,-0.1 0, 0.0 -0.928 72.6 -23.7 124.1-148.1 -10.7 -17.5 11.5 5 5 A S - 0 0 126 -2,-0.3 2,-0.4 2,-0.0 -2,-0.1 -0.499 46.1-143.4-100.3 171.6 -12.6 -15.1 9.3 6 6 A S - 0 0 90 -2,-0.2 2,-0.8 3,-0.0 -2,-0.0 -0.890 12.0-175.6-141.7 107.6 -11.7 -11.6 8.0 7 7 A G S S- 0 0 63 -2,-0.4 -2,-0.0 1,-0.1 0, 0.0 -0.804 71.0 -62.8-107.5 93.9 -14.2 -8.8 7.7 8 8 A V S > S+ 0 0 21 -2,-0.8 4,-0.6 1,-0.1 -1,-0.1 0.830 97.5 132.3 34.0 46.8 -12.7 -5.8 6.1 9 9 A G H > + 0 0 40 2,-0.1 4,-0.7 3,-0.1 -1,-0.1 0.866 64.2 45.4 -90.7 -43.0 -10.3 -5.6 9.1 10 10 A T H >> S+ 0 0 57 2,-0.2 4,-3.0 1,-0.2 3,-1.5 0.968 111.5 51.3 -65.1 -55.2 -7.0 -5.3 7.3 11 11 A I H 3> S+ 0 0 0 1,-0.3 4,-2.1 2,-0.2 5,-0.4 0.931 100.8 61.9 -46.8 -56.6 -8.1 -2.6 4.9 12 12 A D H 3X S+ 0 0 69 -4,-0.6 4,-0.7 1,-0.2 -1,-0.3 0.808 115.8 35.3 -40.5 -35.5 -9.5 -0.4 7.6 13 13 A Q H X S+ 0 0 1 -4,-3.0 3,-1.9 1,-0.2 4,-1.2 0.949 106.7 51.9 -46.5 -63.9 -4.0 -0.3 5.6 15 15 A V H 3X S+ 0 0 0 -4,-2.1 4,-1.8 1,-0.3 -1,-0.2 0.900 101.8 60.1 -38.9 -59.7 -5.9 2.7 4.3 16 16 A K H 3X S+ 0 0 100 -4,-0.7 4,-2.7 -5,-0.4 -1,-0.3 0.833 105.7 52.1 -39.3 -40.9 -5.2 4.8 7.4 17 17 A R H S+ 0 0 93 -3,-1.9 4,-2.9 -4,-1.3 5,-0.6 0.997 105.0 49.0 -61.6 -68.7 -1.5 4.3 6.6 18 18 A V H <5S+ 0 0 21 -4,-1.2 -1,-0.2 1,-0.2 -2,-0.2 0.726 115.8 51.4 -44.7 -22.0 -1.5 5.5 3.0 19 19 A I H <5S+ 0 0 42 -4,-1.8 -1,-0.2 -5,-0.3 -2,-0.2 0.950 116.5 33.1 -81.6 -56.5 -3.4 8.4 4.4 20 20 A E H <5S- 0 0 137 -4,-2.7 -2,-0.2 -5,-0.2 -3,-0.2 0.554 103.3-129.7 -77.0 -7.6 -1.1 9.4 7.3 21 21 A G T <5 + 0 0 45 -4,-2.9 -3,-0.2 -5,-0.2 -4,-0.1 0.414 63.8 141.4 73.8 -4.6 1.8 8.3 5.1 22 22 A S < + 0 0 105 -5,-0.6 2,-0.4 -6,-0.3 -4,-0.1 0.745 62.7 65.6 -40.0 -25.6 3.0 6.2 8.1 23 23 A L S S- 0 0 19 -6,-0.3 5,-0.1 -9,-0.1 0, 0.0 -0.839 97.7-105.9-105.6 140.1 3.9 3.8 5.4 24 24 A S > - 0 0 76 -2,-0.4 4,-1.0 1,-0.1 -1,-0.1 -0.036 28.2-114.4 -55.6 162.5 6.5 4.3 2.7 25 25 A P H > S+ 0 0 108 0, 0.0 4,-0.9 0, 0.0 -1,-0.1 0.828 116.1 49.2 -69.7 -33.2 5.5 5.1 -0.9 26 26 A K H > S+ 0 0 126 1,-0.2 4,-2.1 2,-0.2 5,-0.2 0.883 98.9 66.3 -74.0 -40.1 6.9 1.9 -2.2 27 27 A E H > S+ 0 0 87 1,-0.2 4,-1.7 2,-0.2 -1,-0.2 0.887 97.2 56.7 -47.6 -45.2 5.3 -0.3 0.4 28 28 A R H >X S+ 0 0 103 -4,-1.0 3,-0.9 1,-0.2 4,-0.7 0.954 106.6 46.6 -52.4 -57.4 1.9 0.6 -1.1 29 29 A T H >X S+ 0 0 68 -4,-0.9 3,-0.7 1,-0.3 4,-0.6 0.850 109.8 56.0 -54.9 -36.3 2.8 -0.7 -4.5 30 30 A L H >X S+ 0 0 65 -4,-2.1 3,-1.2 1,-0.2 4,-0.7 0.828 90.4 74.0 -66.2 -32.2 4.2 -3.8 -2.9 31 31 A L H X< S+ 0 0 8 -4,-1.7 3,-1.3 -3,-0.9 6,-0.5 0.868 93.2 54.1 -48.6 -40.6 0.8 -4.4 -1.2 32 32 A K H << S+ 0 0 138 -4,-0.7 -1,-0.3 -3,-0.7 -2,-0.2 0.834 100.0 60.3 -64.4 -32.9 -0.5 -5.5 -4.6 33 33 A E H << S+ 0 0 146 -3,-1.2 -1,-0.3 -4,-0.6 -2,-0.2 0.614 95.4 83.5 -70.4 -11.4 2.4 -8.0 -4.8 34 34 A D S X< S- 0 0 85 -3,-1.3 3,-0.6 -4,-0.7 0, 0.0 -0.692 78.1-137.5 -96.1 147.5 0.9 -9.6 -1.7 35 35 A P G > S+ 0 0 97 0, 0.0 3,-1.3 0, 0.0 4,-0.2 0.824 100.5 68.6 -69.8 -33.0 -1.9 -12.1 -1.6 36 36 A A G 3 S+ 0 0 50 1,-0.3 3,-0.3 2,-0.1 2,-0.1 0.790 103.9 45.8 -57.0 -28.3 -3.6 -10.4 1.4 37 37 A Y G < S+ 0 0 28 -3,-0.6 -1,-0.3 -6,-0.5 4,-0.3 -0.369 72.4 125.4-112.5 51.5 -4.3 -7.5 -1.0 38 38 A W X> + 0 0 136 -3,-1.3 3,-1.2 1,-0.2 4,-0.8 0.868 65.5 64.9 -75.6 -38.4 -5.6 -9.5 -3.9 39 39 A F T 34 S+ 0 0 1 -3,-0.3 -1,-0.2 1,-0.3 6,-0.1 0.775 78.9 89.4 -55.4 -26.3 -8.9 -7.5 -4.1 40 40 A L T 34 S+ 0 0 18 1,-0.3 -1,-0.3 -3,-0.2 -2,-0.2 0.874 93.8 38.2 -36.4 -55.4 -6.8 -4.5 -5.0 41 41 A S T <4 S+ 0 0 115 -3,-1.2 -1,-0.3 -4,-0.3 -2,-0.2 0.880 108.3 79.4 -66.9 -38.9 -7.0 -5.4 -8.6 42 42 A D < + 0 0 73 -4,-0.8 3,-0.1 1,-0.1 0, 0.0 -0.316 50.1 175.9 -69.5 153.4 -10.7 -6.4 -8.2 43 43 A E + 0 0 127 6,-0.0 2,-1.0 -2,-0.0 -1,-0.1 0.592 69.7 69.3-127.0 -35.4 -13.4 -3.8 -8.1 44 44 A N S S+ 0 0 159 4,-0.1 2,-0.2 5,-0.0 -2,-0.1 -0.155 90.4 90.4 -81.9 42.5 -16.7 -5.8 -7.9 45 45 A S S S- 0 0 19 -2,-1.0 4,-0.3 -6,-0.1 0, 0.0 -0.721 77.5-124.9-128.9 178.7 -15.8 -6.9 -4.4 46 46 A L S >> S+ 0 0 76 -2,-0.2 4,-0.9 2,-0.2 3,-0.9 0.894 105.7 55.2 -91.5 -51.9 -16.2 -5.8 -0.8 47 47 A E H 3> S+ 0 0 40 1,-0.3 4,-1.3 2,-0.2 3,-0.3 0.816 112.7 47.2 -51.4 -32.2 -12.7 -5.7 0.5 48 48 A Y H 3> S+ 0 0 30 1,-0.2 4,-1.4 2,-0.2 -1,-0.3 0.745 98.1 69.3 -81.7 -25.4 -12.0 -3.4 -2.4 49 49 A K H <> S+ 0 0 129 -3,-0.9 4,-0.9 -4,-0.3 -1,-0.2 0.733 104.8 44.2 -64.4 -21.7 -15.1 -1.3 -1.6 50 50 A Y H X>S+ 0 0 78 -4,-0.9 5,-1.1 -3,-0.3 4,-1.0 0.942 104.1 56.3 -86.3 -61.1 -13.2 -0.1 1.5 51 51 A Y H <5S+ 0 0 33 -4,-1.3 -2,-0.2 1,-0.3 -3,-0.1 0.796 120.0 37.5 -41.4 -32.7 -9.7 0.6 0.3 52 52 A K H X5S+ 0 0 104 -4,-1.4 4,-1.1 3,-0.1 -1,-0.3 0.813 126.5 36.8 -89.8 -35.9 -11.5 3.0 -2.2 53 53 A L H >X5S+ 0 0 80 -4,-0.9 4,-2.1 -5,-0.2 3,-1.1 0.976 115.7 47.1 -79.0 -70.2 -14.2 4.2 0.3 54 54 A K H 3X5S+ 0 0 47 -4,-1.0 4,-1.7 1,-0.3 -3,-0.2 0.776 115.4 53.0 -42.9 -29.1 -12.4 4.4 3.6 55 55 A L H 3>