==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 15-MAY-05 1X58 . COMPND 2 MOLECULE: HYPOTHETICAL PROTEIN 4930532D21RIK; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR N.NAMEKI,T.TOMIZAWA,S.KOSHIBA,M.INOUE,T.KIGAWA,S.YOKOYAMA, . 62 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5187.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 59.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 27 43.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 133 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 128.1 -13.3 7.6 -10.9 2 2 A S + 0 0 120 2,-0.0 2,-0.3 0, 0.0 0, 0.0 -0.734 360.0 155.0-164.3 104.7 -10.2 7.9 -8.8 3 3 A S + 0 0 134 -2,-0.2 2,-0.3 2,-0.0 0, 0.0 -0.829 9.4 163.7-136.1 170.8 -7.7 10.8 -9.4 4 4 A G - 0 0 66 -2,-0.3 9,-0.1 1,-0.0 -2,-0.0 -0.949 24.0-159.0 177.0 169.1 -5.0 12.8 -7.6 5 5 A S + 0 0 122 -2,-0.3 2,-0.6 0, 0.0 -1,-0.0 -0.046 33.5 148.0-157.7 23.0 -2.1 15.3 -8.1 6 6 A S - 0 0 98 1,-0.1 2,-0.8 2,-0.1 4,-0.1 -0.700 30.0-162.1 -80.5 117.2 0.2 15.2 -5.0 7 7 A G + 0 0 86 -2,-0.6 2,-0.3 2,-0.1 -1,-0.1 -0.446 61.5 74.3 -95.1 53.5 3.8 15.8 -6.1 8 8 A R S S- 0 0 213 -2,-0.8 2,-0.8 3,-0.1 -2,-0.1 -0.925 99.7 -45.6-154.1 172.6 5.4 14.4 -2.8 9 9 A K S S+ 0 0 201 -2,-0.3 2,-0.2 3,-0.0 -2,-0.1 -0.352 90.1 107.8 -51.7 92.4 6.2 11.2 -0.8 10 10 A D S S- 0 0 69 -2,-0.8 2,-0.3 -4,-0.1 41,-0.0 -0.843 78.8 -62.9-153.6-179.8 2.8 9.4 -1.2 11 11 A F - 0 0 30 -2,-0.2 2,-0.1 2,-0.0 -3,-0.1 -0.584 47.2-128.5 -73.9 138.3 1.7 6.2 -3.2 12 12 A T > - 0 0 63 -2,-0.3 4,-2.1 1,-0.1 5,-0.2 -0.451 32.1-104.8 -67.8 158.8 2.0 6.3 -7.0 13 13 A K H > S+ 0 0 160 1,-0.2 4,-1.5 2,-0.2 -1,-0.1 0.797 123.9 60.8 -55.3 -27.0 -1.2 5.3 -8.8 14 14 A E H > S+ 0 0 91 2,-0.2 4,-2.0 1,-0.2 -1,-0.2 0.933 104.2 45.4 -67.4 -46.4 0.7 2.1 -9.6 15 15 A E H > S+ 0 0 22 1,-0.2 4,-2.0 2,-0.2 -2,-0.2 0.904 112.4 51.8 -64.8 -38.7 1.1 1.2 -5.8 16 16 A V H X S+ 0 0 30 -4,-2.1 4,-1.9 2,-0.2 5,-0.2 0.815 105.2 58.0 -67.2 -27.4 -2.6 2.1 -5.3 17 17 A N H X S+ 0 0 87 -4,-1.5 4,-3.0 -5,-0.2 -2,-0.2 0.993 110.6 40.8 -57.5 -60.2 -3.4 -0.3 -8.2 18 18 A Y H X S+ 0 0 60 -4,-2.0 4,-2.7 1,-0.2 5,-0.2 0.777 108.7 63.3 -61.1 -30.4 -1.7 -3.1 -6.3 19 19 A L H X S+ 0 0 0 -4,-2.0 4,-2.6 2,-0.2 -1,-0.2 0.980 115.1 29.0 -58.8 -58.9 -3.3 -2.0 -3.1 20 20 A F H X S+ 0 0 89 -4,-1.9 4,-2.4 2,-0.2 -2,-0.2 0.874 117.3 59.7 -72.0 -35.7 -6.9 -2.6 -4.3 21 21 A H H X S+ 0 0 100 -4,-3.0 4,-0.5 -5,-0.2 -2,-0.2 0.914 113.2 40.7 -54.6 -45.2 -5.7 -5.4 -6.7 22 22 A G H >X S+ 0 0 0 -4,-2.7 4,-3.0 -5,-0.2 3,-2.0 0.986 114.5 48.3 -63.9 -64.4 -4.4 -7.2 -3.5 23 23 A V H 3X S+ 0 0 20 -4,-2.6 4,-1.9 1,-0.3 -2,-0.2 0.777 100.8 68.0 -54.4 -27.9 -7.3 -6.4 -1.1 24 24 A K H 3< S+ 0 0 184 -4,-2.4 -1,-0.3 2,-0.2 -2,-0.2 0.761 122.6 15.0 -67.0 -29.7 -9.9 -7.5 -3.8 25 25 A T H << S+ 0 0 110 -3,-2.0 -2,-0.2 -4,-0.5 -1,-0.2 0.754 132.7 46.3 -97.2 -55.8 -8.6 -11.1 -3.3 26 26 A M H < S- 0 0 51 -4,-3.0 -3,-0.2 1,-0.2 2,-0.2 0.685 86.6-150.3 -61.4 -29.3 -6.6 -10.9 -0.0 27 27 A G < - 0 0 27 -4,-1.9 2,-0.5 -5,-0.4 -1,-0.2 -0.518 68.3 -23.7 64.5-153.8 -9.0 -9.0 2.1 28 28 A N S S+ 0 0 111 -2,-0.2 2,-1.3 -4,-0.1 -1,-0.2 0.067 92.8 134.5 -76.1 19.9 -7.3 -6.9 4.7 29 29 A H > + 0 0 118 -2,-0.5 4,-1.9 1,-0.2 5,-0.1 -0.610 26.4 172.8 -81.6 97.8 -4.1 -9.1 4.8 30 30 A W H > S+ 0 0 49 -2,-1.3 4,-2.5 2,-0.2 -1,-0.2 0.922 70.7 46.6 -81.7 -47.9 -1.5 -6.3 4.7 31 31 A N H > S+ 0 0 87 1,-0.2 4,-1.7 2,-0.2 5,-0.2 0.935 113.7 53.4 -58.2 -43.5 1.9 -8.1 5.2 32 32 A S H > S+ 0 0 43 1,-0.2 4,-2.5 2,-0.2 3,-0.3 0.901 109.7 46.4 -54.9 -49.9 0.7 -10.6 2.6 33 33 A I H X S+ 0 0 0 -4,-1.9 4,-2.1 2,-0.2 -1,-0.2 0.930 107.6 57.8 -58.6 -48.7 -0.1 -7.8 0.0 34 34 A L H < S+ 0 0 33 -4,-2.5 5,-0.3 1,-0.3 -1,-0.2 0.813 116.4 35.3 -53.7 -37.1 3.3 -6.1 0.8 35 35 A W H < S+ 0 0 198 -4,-1.7 -1,-0.3 -3,-0.3 -2,-0.2 0.794 113.5 58.5 -85.1 -34.6 5.0 -9.4 -0.3 36 36 A S H < S+ 0 0 76 -4,-2.5 -2,-0.2 -5,-0.2 -3,-0.2 0.808 109.6 38.6 -69.8 -30.4 2.6 -10.4 -3.1 37 37 A F S < S- 0 0 31 -4,-2.1 2,-0.5 -5,-0.1 -22,-0.0 -0.867 93.7 -96.2-124.9 154.4 3.0 -7.2 -5.2 38 38 A P + 0 0 88 0, 0.0 2,-0.3 0, 0.0 -20,-0.1 -0.563 55.5 167.9 -72.1 117.8 6.0 -5.0 -6.1 39 39 A F - 0 0 27 -2,-0.5 3,-0.1 -5,-0.3 4,-0.1 -0.868 43.0 -66.7-129.3 161.9 6.0 -2.0 -3.6 40 40 A Q > - 0 0 83 -2,-0.3 3,-1.5 1,-0.1 -1,-0.1 -0.135 60.8-105.7 -47.6 129.3 8.3 0.8 -2.6 41 41 A K T 3 S+ 0 0 211 1,-0.3 -1,-0.1 -3,-0.0 3,-0.1 -0.189 104.1 27.2 -57.8 150.8 11.5 -0.5 -0.8 42 42 A G T 3 S+ 0 0 78 1,-0.2 -1,-0.3 -3,-0.1 -2,-0.1 0.468 89.1 146.1 69.6 4.2 11.6 0.1 2.9 43 43 A R < - 0 0 27 -3,-1.5 2,-0.3 -4,-0.1 -1,-0.2 -0.099 39.5-143.3 -53.2 164.0 7.8 0.0 3.2 44 44 A R >> - 0 0 179 -3,-0.1 3,-0.9 1,-0.0 4,-0.6 -0.918 24.8-115.4-121.5 158.5 6.0 -1.4 6.2 45 45 A A H >> S+ 0 0 12 -2,-0.3 4,-1.4 1,-0.2 3,-0.7 0.795 115.1 65.6 -62.4 -25.8 2.7 -3.4 6.0 46 46 A V H 3> S+ 0 0 91 1,-0.2 4,-3.1 2,-0.2 5,-0.2 0.873 87.9 66.5 -63.7 -34.8 1.2 -0.5 8.0 47 47 A D H <> S+ 0 0 56 -3,-0.9 4,-2.4 1,-0.2 -1,-0.2 0.833 101.7 49.2 -56.9 -35.1 1.7 1.9 5.1 48 48 A L H < S+ 0 0 52 -4,-2.2 3,-1.3 1,-0.2 -1,-0.2 0.929 110.7 43.4 -63.7 -44.3 -8.5 6.0 0.6 56 56 A I H 3< S+ 0 0 116 -4,-2.8 -2,-0.2 1,-0.3 -1,-0.2 0.581 103.6 66.3 -81.3 -8.2 -11.7 4.8 2.4 57 57 A S T 3< S- 0 0 56 -4,-1.2 -1,-0.3 -5,-0.3 -2,-0.2 0.469 96.7-164.7 -80.0 -4.9 -11.8 8.3 4.1 58 58 A G < - 0 0 43 -3,-1.3 2,-0.2 -4,-0.2 -1,-0.2 0.027 32.9 -25.9 61.3-166.7 -12.5 9.5 0.5 59 59 A P S S+ 0 0 125 0, 0.0 -4,-0.0 0, 0.0 0, 0.0 -0.640 110.1 6.2 -83.4 152.5 -12.2 13.2 -0.7 60 60 A S S S+ 0 0 110 -2,-0.2 0, 0.0 2,-0.0 0, 0.0 0.154 91.3 76.6 55.2 174.6 -12.6 16.1 1.7 61 61 A S 0 0 122 1,-0.1 0, 0.0 0, 0.0 0, 0.0 0.978 360.0 360.0 48.3 75.0 -13.0 15.9 5.5 62 62 A G 0 0 125 0, 0.0 -1,-0.1 0, 0.0 -4,-0.0 0.462 360.0 360.0 144.4 360.0 -9.4 15.2 6.6