==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 20-AUG-04 1X9B . COMPND 2 MOLECULE: HYPOTHETICAL MEMBRANE PROTEIN TA0354_69_121; . SOURCE 2 ORGANISM_SCIENTIFIC: THERMOPLASMA ACIDOPHILUM; . AUTHOR B.WU,A.YEE,Y.J.HUANG,T.A.RAMELOT,A.SEMESI,A.LEMAK,A.EDWARD, . 53 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4210.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 35 66.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 34 64.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 280 0, 0.0 3,-0.3 0, 0.0 2,-0.0 0.000 360.0 360.0 360.0 139.3 -10.7 -12.9 10.6 2 2 A N + 0 0 158 1,-0.2 3,-0.1 2,-0.0 0, 0.0 -0.138 360.0 53.2 -79.1-179.5 -7.2 -11.7 11.5 3 3 A L + 0 0 140 1,-0.2 2,-1.8 2,-0.1 3,-0.3 0.721 66.3 151.2 63.6 22.7 -4.1 -11.7 9.3 4 4 A S > + 0 0 56 -3,-0.3 4,-1.4 1,-0.2 3,-0.5 -0.456 2.9 154.6 -85.5 67.5 -6.2 -9.8 6.7 5 5 A D H > S+ 0 0 14 -2,-1.8 4,-2.1 1,-0.2 -1,-0.2 0.805 70.3 61.9 -64.5 -29.0 -3.2 -8.0 5.1 6 6 A R H > S+ 0 0 137 -3,-0.3 4,-2.5 1,-0.2 -1,-0.2 0.871 101.9 51.9 -64.3 -36.2 -5.3 -7.7 1.8 7 7 A A H > S+ 0 0 52 -3,-0.5 4,-2.0 2,-0.2 -1,-0.2 0.888 107.1 52.5 -66.5 -39.6 -7.9 -5.7 3.8 8 8 A K H X S+ 0 0 68 -4,-1.4 4,-2.7 2,-0.2 5,-0.2 0.912 110.9 48.1 -61.3 -43.9 -5.1 -3.4 5.0 9 9 A F H X S+ 0 0 3 -4,-2.1 4,-3.2 2,-0.2 5,-0.2 0.954 113.5 45.3 -60.2 -53.2 -4.0 -2.9 1.4 10 10 A E H X S+ 0 0 118 -4,-2.5 4,-0.5 1,-0.2 -1,-0.2 0.795 115.2 49.8 -62.8 -28.3 -7.5 -2.2 0.1 11 11 A S H X S+ 0 0 75 -4,-2.0 4,-0.6 -5,-0.2 -2,-0.2 0.899 115.2 41.8 -78.0 -41.7 -8.1 0.1 3.1 12 12 A M H < S+ 0 0 24 -4,-2.7 3,-0.3 1,-0.2 -2,-0.2 0.898 114.1 51.1 -70.1 -43.4 -4.8 2.1 2.6 13 13 A I H < S+ 0 0 46 -4,-3.2 -1,-0.2 -5,-0.2 -2,-0.2 0.649 92.3 84.5 -70.8 -14.8 -5.3 2.2 -1.2 14 14 A N H < S- 0 0 116 -4,-0.5 -1,-0.2 -5,-0.2 -2,-0.2 0.962 115.7 -19.2 -53.5 -67.1 -8.8 3.6 -0.8 15 15 A S S < S+ 0 0 100 -4,-0.6 2,-0.5 -3,-0.3 -1,-0.2 -0.454 74.5 169.7-148.5 71.5 -8.1 7.3 -0.3 16 16 A P - 0 0 10 0, 0.0 5,-0.1 0, 0.0 -4,-0.0 -0.742 20.6-148.3 -89.6 125.3 -4.5 8.2 0.7 17 17 A S > - 0 0 69 -2,-0.5 4,-1.8 1,-0.0 5,-0.1 0.001 34.9 -88.8 -74.7-171.4 -3.4 11.8 0.6 18 18 A K H > S+ 0 0 141 2,-0.2 4,-1.8 1,-0.2 3,-0.3 1.000 126.3 25.8 -66.2 -69.6 0.1 13.0 -0.2 19 19 A S H > S+ 0 0 88 1,-0.2 4,-2.2 2,-0.2 5,-0.2 0.856 123.8 56.5 -61.9 -33.7 1.8 13.0 3.2 20 20 A V H > S+ 0 0 57 1,-0.2 4,-1.3 2,-0.2 -1,-0.2 0.864 103.2 54.8 -65.1 -36.3 -0.8 10.4 4.2 21 21 A F H X S+ 0 0 3 -4,-1.8 4,-3.0 -3,-0.3 3,-0.3 0.946 108.8 46.2 -63.3 -49.4 0.4 8.2 1.3 22 22 A V H X S+ 0 0 84 -4,-1.8 4,-1.5 1,-0.2 -2,-0.2 0.950 111.8 50.1 -59.5 -50.1 4.1 8.3 2.4 23 23 A R H < S+ 0 0 140 -4,-2.2 4,-0.4 1,-0.2 -1,-0.2 0.763 120.6 37.8 -60.9 -25.3 3.3 7.5 6.1 24 24 A N H X S+ 0 0 21 -4,-1.3 4,-3.3 -3,-0.3 -1,-0.2 0.743 103.7 72.4 -93.7 -29.0 1.1 4.6 4.9 25 25 A L H X S+ 0 0 14 -4,-3.0 4,-3.6 2,-0.2 5,-0.3 0.870 90.1 58.6 -53.6 -46.0 3.5 3.6 2.1 26 26 A N H X S+ 0 0 101 -4,-1.5 4,-1.5 1,-0.2 -1,-0.2 0.955 117.5 31.8 -51.6 -53.3 6.1 2.2 4.5 27 27 A E H > S+ 0 0 94 -4,-0.4 4,-3.0 2,-0.2 -2,-0.2 0.873 117.1 59.4 -71.9 -35.9 3.6 -0.3 5.9 28 28 A L H X S+ 0 0 0 -4,-3.3 4,-2.5 1,-0.2 -2,-0.2 0.911 106.3 46.7 -58.0 -45.4 1.9 -0.5 2.5 29 29 A E H X S+ 0 0 70 -4,-3.6 4,-1.9 2,-0.2 -1,-0.2 0.871 112.4 50.9 -66.0 -36.6 5.1 -1.7 0.9 30 30 A A H X S+ 0 0 50 -4,-1.5 4,-2.1 -5,-0.3 -2,-0.2 0.928 112.2 46.4 -65.9 -43.8 5.6 -4.2 3.7 31 31 A L H X S+ 0 0 8 -4,-3.0 4,-2.5 2,-0.2 -2,-0.2 0.883 108.5 56.4 -65.1 -39.9 2.0 -5.5 3.3 32 32 A A H X S+ 0 0 0 -4,-2.5 4,-2.3 1,-0.2 8,-0.3 0.920 109.7 44.8 -58.0 -46.3 2.5 -5.7 -0.5 33 33 A V H < S+ 0 0 79 -4,-1.9 -1,-0.2 1,-0.2 -2,-0.2 0.895 112.1 53.2 -64.8 -40.4 5.5 -8.0 -0.1 34 34 A R H < S+ 0 0 147 -4,-2.1 -2,-0.2 1,-0.2 -1,-0.2 0.882 111.2 46.1 -62.0 -40.9 3.6 -10.1 2.5 35 35 A L H < S- 0 0 51 -4,-2.5 2,-0.3 1,-0.2 -2,-0.2 0.905 120.5-105.7 -69.7 -42.5 0.7 -10.5 0.1 36 36 A G < - 0 0 26 -4,-2.3 -1,-0.2 -5,-0.2 0, 0.0 -0.976 39.3 -60.1 156.0-139.1 2.9 -11.4 -2.9 37 37 A K S > S+ 0 0 168 -2,-0.3 4,-1.2 2,-0.1 -1,-0.1 0.654 118.3 61.3-117.1 -29.9 4.2 -9.9 -6.1 38 38 A S H > S+ 0 0 74 1,-0.2 4,-1.0 2,-0.2 3,-0.4 0.917 108.8 44.7 -65.8 -42.7 0.9 -9.2 -8.0 39 39 A Y H > S+ 0 0 51 1,-0.2 4,-1.8 -7,-0.2 -1,-0.2 0.765 104.2 65.4 -71.7 -24.3 -0.3 -6.8 -5.3 40 40 A R H > S+ 0 0 104 -8,-0.3 4,-2.4 1,-0.2 -1,-0.2 0.855 97.6 54.9 -64.7 -33.9 3.1 -5.3 -5.2 41 41 A I H X S+ 0 0 102 -4,-1.2 4,-2.1 -3,-0.4 -1,-0.2 0.902 105.9 50.9 -64.4 -41.5 2.5 -4.0 -8.7 42 42 A Q H X S+ 0 0 77 -4,-1.0 4,-1.8 2,-0.2 -2,-0.2 0.869 108.4 53.3 -63.3 -37.0 -0.7 -2.3 -7.5 43 43 A L H X S+ 0 0 6 -4,-1.8 4,-2.0 2,-0.2 3,-0.4 0.962 108.7 47.5 -60.9 -53.1 1.4 -0.7 -4.7 44 44 A D H X S+ 0 0 94 -4,-2.4 4,-2.6 1,-0.2 5,-0.3 0.849 107.6 58.3 -56.1 -37.0 3.8 0.6 -7.3 45 45 A Q H X S+ 0 0 120 -4,-2.1 4,-2.0 1,-0.2 -1,-0.2 0.903 106.5 47.3 -59.8 -42.8 0.8 1.9 -9.3 46 46 A A H X S+ 0 0 9 -4,-1.8 4,-1.5 -3,-0.4 5,-0.2 0.859 109.6 54.2 -66.6 -36.9 -0.3 3.9 -6.3 47 47 A K H X S+ 0 0 36 -4,-2.0 4,-2.6 1,-0.2 3,-0.3 0.954 113.9 40.0 -61.7 -49.4 3.3 5.3 -5.9 48 48 A E H < S+ 0 0 106 -4,-2.6 -2,-0.2 1,-0.2 -1,-0.2 0.822 105.6 68.9 -68.8 -31.5 3.4 6.5 -9.5 49 49 A K H < S+ 0 0 131 -4,-2.0 -1,-0.2 -5,-0.3 -2,-0.2 0.903 116.8 23.2 -52.9 -45.2 -0.3 7.6 -9.1 50 50 A W H < S- 0 0 97 -4,-1.5 -2,-0.2 -3,-0.3 -3,-0.1 0.944 121.3-100.9 -82.8 -62.2 0.9 10.3 -6.7 51 51 A K < + 0 0 105 -4,-2.6 -4,-0.1 -5,-0.2 -2,-0.0 -0.193 48.3 170.4 175.4 -66.5 4.5 10.6 -7.9 52 52 A V 0 0 61 1,-0.2 -5,-0.1 -6,-0.1 -3,-0.1 0.821 360.0 360.0 26.5 68.9 7.0 8.8 -5.6 53 53 A K 0 0 229 -5,-0.0 -1,-0.2 -6,-0.0 -5,-0.0 -0.787 360.0 360.0-117.8 360.0 10.0 9.1 -7.8