==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIVIRAL PROTEIN 31-MAY-10 2XG7 . COMPND 2 MOLECULE: BONE MARROW STROMAL ANTIGEN 2; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR R.A.STEINER . 157 2 1 0 1 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 11415.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 156 99.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 5.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 148 94.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 72 A Q >> 0 0 192 0, 0.0 4,-1.3 0, 0.0 3,-0.6 0.000 360.0 360.0 360.0 -18.6 9.4 -64.4 87.3 2 73 A E H 3> + 0 0 123 1,-0.2 4,-1.4 2,-0.2 5,-0.2 0.803 360.0 72.2 -58.2 -29.3 6.9 -63.7 84.5 3 74 A L H 3> S+ 0 0 130 1,-0.2 4,-1.3 2,-0.2 -1,-0.2 0.887 98.3 44.5 -54.6 -44.6 5.3 -61.3 87.0 4 75 A T H <> S+ 0 0 61 -3,-0.6 4,-2.4 1,-0.2 3,-0.4 0.930 108.9 56.8 -66.2 -46.7 8.2 -58.8 86.7 5 76 A E H X S+ 0 0 141 -4,-1.3 4,-2.2 1,-0.2 -1,-0.2 0.764 109.4 47.9 -53.2 -29.4 8.2 -59.2 82.9 6 77 A A H X S+ 0 0 33 -4,-1.4 4,-1.3 2,-0.2 -1,-0.2 0.734 105.8 55.0 -89.6 -27.7 4.5 -58.1 83.0 7 78 A Q H X S+ 0 0 117 -4,-1.3 4,-1.4 -3,-0.4 -2,-0.2 0.905 117.6 38.7 -65.7 -43.8 5.1 -55.1 85.3 8 79 A K H >X S+ 0 0 136 -4,-2.4 4,-2.3 2,-0.2 3,-0.9 0.991 115.9 47.8 -67.3 -67.3 7.7 -54.0 82.7 9 80 A G H 3X S+ 0 0 19 -4,-2.2 4,-1.5 1,-0.3 -3,-0.2 0.847 115.1 50.6 -44.1 -38.8 5.8 -55.0 79.5 10 81 A F H 3X S+ 0 0 60 -4,-1.3 4,-1.9 2,-0.2 -1,-0.3 0.873 106.9 52.6 -66.7 -41.9 2.8 -53.3 81.0 11 82 A Q H X S+ 0 0 68 -4,-2.6 4,-1.9 2,-0.2 3,-0.7 0.975 109.9 48.0 -56.1 -56.9 -13.2 -13.1 39.4 51 122 A T H 3X S+ 0 0 62 -4,-2.2 4,-2.3 1,-0.3 5,-0.3 0.901 108.6 54.9 -52.4 -45.2 -10.8 -10.1 38.9 52 123 A L H 3X S+ 0 0 2 -4,-2.2 4,-1.7 1,-0.2 -1,-0.3 0.863 108.3 50.7 -54.4 -36.2 -9.5 -11.8 35.7 53 124 A N H X S+ 0 0 107 -4,-2.1 4,-2.1 -3,-0.3 3,-1.1 0.974 110.0 55.3 -56.7 -53.4 -16.0 -3.2 20.4 65 136 A R H 3X S+ 0 0 91 -4,-2.6 4,-2.4 1,-0.3 -1,-0.2 0.852 110.2 47.8 -44.5 -41.1 -16.0 0.6 21.3 66 137 A L H 3X S+ 0 0 1 -4,-1.8 4,-1.5 -5,-0.3 -1,-0.3 0.773 104.7 57.3 -78.9 -25.8 -12.9 0.9 19.2 67 138 A R H < S+ 0 0 63 -4,-1.6 3,-0.6 2,-0.2 4,-0.3 0.871 104.1 57.2 -72.7 -39.9 -13.4 7.5 2.3 79 150 A D H >< S+ 0 0 86 -4,-2.0 3,-1.5 1,-0.2 -2,-0.2 0.880 102.6 54.8 -54.5 -41.9 -15.1 11.0 2.1 80 151 A K H 3< S+ 0 0 93 -4,-1.8 -1,-0.2 1,-0.3 -2,-0.2 0.798 89.0 79.1 -63.3 -28.0 -11.7 12.4 1.5 81 152 A G T << 0 0 72 -3,-0.6 -1,-0.3 -4,-0.6 -2,-0.2 0.646 360.0 360.0 -54.7 -18.5 -11.4 9.9 -1.4 82 153 A T < 0 0 163 -3,-1.5 -1,-0.0 -4,-0.3 -3,-0.0 -0.660 360.0 360.0 -79.2 360.0 -13.5 12.3 -3.5 83 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 84 77 C A > 0 0 132 0, 0.0 4,-1.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -8.1 -3.1 -56.3 87.4 85 78 C Q H > + 0 0 150 2,-0.2 4,-1.7 1,-0.2 5,-0.1 0.850 360.0 57.9 -64.0 -38.3 -2.2 -58.5 84.4 86 79 C K H > S+ 0 0 148 1,-0.2 4,-2.3 2,-0.2 -1,-0.2 0.913 102.0 56.6 -56.3 -42.6 -5.7 -58.2 83.1 87 80 C G H > S+ 0 0 28 1,-0.2 4,-2.0 2,-0.2 -2,-0.2 0.866 102.9 54.3 -55.2 -39.8 -5.0 -54.5 83.2 88 81 C F H X S+ 0 0 45 -4,-1.2 4,-2.1 2,-0.2 -1,-0.2 0.869 108.1 49.1 -61.7 -40.2 -2.1 -55.2 80.9 89 82 C Q H X S+ 0 0 98 -4,-1.7 4,-2.3 -3,-0.2 -2,-0.2 0.929 110.9 48.7 -65.6 -46.0 -4.4 -57.0 78.4 90 83 C D H X S+ 0 0 90 -4,-2.3 4,-2.3 1,-0.2 -2,-0.2 0.857 114.3 46.4 -62.7 -38.3 -7.0 -54.2 78.4 91 84 C V H X S+ 0 0 28 -4,-2.0 4,-1.8 2,-0.2 -1,-0.2 0.887 108.9 53.3 -75.3 -41.6 -4.3 -51.5 77.8 92 85 C E H X S+ 0 0 84 -4,-2.1 4,-1.8 2,-0.2 -2,-0.2 0.940 111.9 47.2 -55.4 -48.2 -2.5 -53.5 75.1 93 86 C A H >X S+ 0 0 50 -4,-2.3 4,-2.4 1,-0.2 3,-0.5 0.959 107.4 55.2 -58.0 -53.0 -5.9 -53.7 73.3 94 87 C Q H 3X S+ 0 0 103 -4,-2.3 4,-2.0 1,-0.3 -1,-0.2 0.825 108.0 51.5 -48.0 -36.4 -6.5 -50.0 73.8 95 88 C A H 3X S+ 0 0 4 -4,-1.8 4,-2.1 2,-0.2 -1,-0.3 0.856 106.1 52.8 -73.4 -37.9 -3.2 -49.4 72.1 96 89 C A H X S+ 0 0 54 -4,-2.0 4,-2.1 2,-0.2 3,-1.1 0.968 107.1 53.2 -54.1 -58.1 -5.0 -15.0 31.2 132 125 C H H 3X S+ 0 0 102 -4,-2.6 4,-2.5 1,-0.3 -1,-0.2 0.851 109.1 51.4 -47.5 -39.8 -4.4 -16.1 27.6 133 126 C K H 3X S+ 0 0 118 -4,-2.4 4,-1.7 1,-0.2 -1,-0.3 0.835 108.6 51.2 -70.4 -31.2 -7.8 -14.8 26.7 134 127 C L H